Math, asked by morningmist, 3 months ago

please answer step by step correctly I'll mark as brainliest​

Attachments:

Answers

Answered by Yuseong
11

\sf{{\Bigg  ( \dfrac{3 {x}^{2}y }{9x {y}^{4} }} \Bigg) }^{2}

Now, we can also write it as :

\sf{\longrightarrow\dfrac{ {(3 {x}^{2}y)}^{2}   }{{(9x {y}^{4}) }^{2}  }}

Now, we have find the square of the expression given in the bracket. By using distributive property :

\sf{\longrightarrow\dfrac{  {(3)}^{2}  \times  {( {x}^{2} )}^{2}  \times  {(y)}^{2}  }{ {(9)}^{2}   \times  {(x)}^{2}  \times  {( {y}^{4} )}^{2} }}

Finding squares of the following :

\sf{\longrightarrow\dfrac{  9\times  {( x )}^{2 \times 2}  \times  {y}^{2}  }{81   \times  {x}^{2}  \times  {(y)}^{4 \times 2} }}

 \sf { \because {({a}^{m})}^{n} = {(a)}^{m \times n } }

\sf{\longrightarrow\dfrac{  1  }{9} \times  {x}^{4 - 2} \times {y}^{2 - 8}  }

 \sf { \because \dfrac{{a}^{m}}{{a}^{n}}= {(a)}^{m-n } }

\sf{\longrightarrow\dfrac{  {x}^{2}   \times  {y}^{ - 6} }{9} }

\sf{\longrightarrow\dfrac{  {x}^{2}    \times 1 }{9 \times  {y}^{6} } }

 \sf { \because {a}^{-m} = \dfrac{1}{{a}^{m}} }

\longrightarrow\boxed{\sf \red{\dfrac{  {x}^{2}  }{9  {y}^{6} } } }

Therefore, value of  \sf{{\Bigg  ( \dfrac{3 {x}^{2}y }{9x {y}^{4} }} \Bigg) }^{2} is  \sf { \dfrac { {x}^{2} }{ 9 {y}^{6} } } .

More :

 \boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

Attachments:
Similar questions