Math, asked by itsmariyamkhan20, 1 month ago

please answer the above questions in detail..

✖️✖️✖️no spamming✖️✖️✖️​

Attachments:

Answers

Answered by Sanchodelrio12
3

Answer:

Please check the attachment hope this helped you. Do mark it brainliest if it helped you.

Attachments:
Answered by VεnusVεronίcα
21

Answer:

The sum of first ‘n’ terms of the AP is when it’s sum of first 7 terms is 49 and that of 17 terms is 289.

 \\

\qquad_____________

 \\

Step-by-step explanation:

According to the question, it is given that the sum of first 7 terms of the AP is 49. So :

\tt\implies~ S_n=\dfrac{n}{2}~~[2a+(n-1)d]

\tt\implies~ S_7=\dfrac{7}{2}~~[2a+(7-1)d]

\tt\implies~ S_7=\dfrac{7}{2}~~[2a+6d]

\tt\implies~ 49=\dfrac{7}{2}~~[2a+6d]

\tt\implies~ 49\times\dfrac{2}{7}=2a+6d

\tt\implies~ \cancel{49}\times\dfrac{2}{\cancel 7}=2a+6d

\tt\implies~ 7\times 2=2a+6d

\tt\implies~ 14=2a+6d

\tt\implies~ 14=2~~(a+3d)

\tt\implies~ \dfrac{14}{2}=a+3d

\tt\implies~ \cancel\dfrac{14}{2}=a+3d

\tt\implies~ 7=a+3d~~~\dots\dots(eq^n.I)

 \:

Also, it is given that, the sum of 17 terms is 289. So, we get :

\tt\implies~ S_n=\dfrac{n}{2}~~[2a+(n-1)d]

\tt\implies~ S_{17}=\dfrac{17}{2}~~[2a+(17-1)d]

\tt\implies~ S_{17}=\dfrac{17}{2}~~[2a+16d]

\tt\implies~ 289=\dfrac{17}{2}~~[2a+16d]

\tt\implies~ 289\times\dfrac{2}{17}=2a+16d

\tt\implies~ \cancel{289}\times\dfrac{2}{\cancel{17}}=2a+16d

\tt\implies~ 17\times 2=2a+16d

\tt\implies~ 34=2a+16d

\tt\implies~ 34=2~~(a+8d)

\tt\implies~ \dfrac{34}{2}=a+8d

\tt\implies~ \cancel\dfrac{34}{2}=a+8d

\tt\implies~ 17=a+8d~~~\dots\dots(eq^n.II)

 \:

Now, let’s subtract eq . I from eq . II to get the common difference d :

\tt\implies~ 17-7=a+8d-(a+3d)

\tt\implies~ 10=a-a+8d-3d

\tt\implies~ 10=5d

\tt\implies~ \dfrac{10}{5}=d

\tt\implies~ \cancel\dfrac{10}{5}=d

\tt\implies~ d=2

 \:

Substituting this value of d in eq . I to get the value of a :

\tt\implies~ 7=a+3d

\tt\implies~ 7=a+3~(2)

\tt\implies~ 7=a+6

\tt\implies~ 7-6=a

\tt\implies~ a=1

 \:

Finally, let’s substitute these values of a’ and d to get the sum of n terms :

\tt\implies~ S_n=\dfrac{n}{2}~~[2a+(n-1)d]

\tt\implies~ S_n=\dfrac{n}{2}~~[2(1)+(n-1)(2)]

\tt\implies~ S_n=\dfrac{n}{2}~~[2+2n-2]

\tt\implies~ S_n=\dfrac{n}{2}~~[2n]

\tt\implies~ S_n=\dfrac{n}{\cancel2}~~[\cancel{2n}]

\tt\implies~ S_n=n\times n

\tt\implies~ S_n=n^2

 \:

\qquad_____________

Therefore, the sum of ‘n’ terms of AP is n².

Similar questions