Please answer the following
#10
Attachments:
qais:
im solving this logically....so writing the answer here....just put the value a= -1, which satisfy the given equation and hence the answer will be 2
Answers
Answered by
2
(a+1) is the factor of the given equation by hit and trial method,
so , (a+1) =0
⇒a = -1
Now, putting the value in the given expression
(-1)²⁴⁵⁴-(-1)²⁴¹² +2
=1-1 +2
=2
so , (a+1) =0
⇒a = -1
Now, putting the value in the given expression
(-1)²⁴⁵⁴-(-1)²⁴¹² +2
=1-1 +2
=2
Answered by
1
a⁵+a⁴+a³+a²+a+1=0
or, a⁵+a⁴+a³+a²+a=-1
or, a(a⁴+a³+a²+1)=-1
or, a⁴+a³+a²+a+1=-1/a
or, a⁴+a³+a²+a=-1/a-1
or, a(a³+a²+a+1)=-(1+a)/a
or, a³+a²+a+1=-(1+a)/a²
or, a³+a²+a=-(1+a)/a²-1
or, a(a²+a+1)=-{(1+a)/a²+1}
or, a(a²+a+1)=-(1+a+a²)/a²
or, a=-1/a²
or, a₃=-1
∴,
=
=
=1-1+2
=2
∴, Answer: (4) 2
or, a⁵+a⁴+a³+a²+a=-1
or, a(a⁴+a³+a²+1)=-1
or, a⁴+a³+a²+a+1=-1/a
or, a⁴+a³+a²+a=-1/a-1
or, a(a³+a²+a+1)=-(1+a)/a
or, a³+a²+a+1=-(1+a)/a²
or, a³+a²+a=-(1+a)/a²-1
or, a(a²+a+1)=-{(1+a)/a²+1}
or, a(a²+a+1)=-(1+a+a²)/a²
or, a=-1/a²
or, a₃=-1
∴,
=
=
=1-1+2
=2
∴, Answer: (4) 2
Similar questions