Please answer the following 2 qs
Answers
Questions:-
- If x + y + z = 0 , show that x³ + y³ + z³ = 3xyz.
- Without actually calculating the cubes , find the value of each of the following:
i) ( - 12)³ + (7)³ + (5)³
ii) (28)³ + ( - 15)³ + ( - 13)³
Answers:-
1. Given:-
x + y + z = 0 -- equation (1)
We know that,
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
So,
⟹ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⟹ x³ + y³ + z³ - 3xyz = 0 * (x² + y² + z² - xy - yz - zx)
[ ∵ From equation (1) ]
⟹ x³ + y³ + z³ - 3xyz = 0
⟹ x³ + y³ + z³ = 3xyz
Hence, Proved.
_________________________
2. (i) ( - 12)³ + (7)³ + (5)³
We know,
If x + y + z = 0 , then x³ + y³ + z³ = 3xyz.
Let,
- x = - 12
- y = 7
- z = 5
⟹ x + y + z = - 12 + 7 + 5 = 0
Therefore,
⟹ ( - 12)³ + (7)³ + (5)³ = 3( - 12)(7)(5)
⟹ ( - 12)³ + (7)³ + (5)³ = - 1260
ii) (28)³ + ( - 15)³ + ( - 13)³
In the same way;
⟹ (28)³ + ( - 15)³ + ( - 13)³ = 3(28)(- 15)(- 13)
⟹ (28)³ + ( - 15)³ + ( - 13)³ = 16380
Step-by-step explanation:
13)
Given :-
x + y + z = 0
To Show :-
x³ + y³ + z³ = 3xyz
Solution :-
x + y + z = 0 [Given]
x³ + y³ + z³ = 3xyz [To Prove]
On transposing 3xyz to LHS
x³ + y³ + z³ - 3xyz = (x + y + z)[x² + y² + z² - (xy + yz + xz)]
x³ + y³ + z³ - 3xyz = 0[x² + y² + z² - (xy + yz + xz)]
x³ + y³ + z³ - 3xyz = 0[x² + y² + z² - xy - yz - xz]
x³ + y³ + z³ - 3xyz = 0
On transposing 3xyz to RHS
x³ + y³ + z³ = 0 + 3xyz
x³ + y³ + z³ = 3xyz
Hence proved
14)
(i) (-12)³ - (7)³ + (5)³
From above question we get
If x + y + z = 0 then x³ + y³ + z³ = 3xyz
x + y + z = -12 + 7 + 5
x + y + z = -12 + 12
x + y + z = 0
So,
x³ + y³ + z³ = 3(-12)(7)(5)
x³ + y³ + z³ = -36 × 35
x³ + y³ + z³ = -126/
(ii) (28)³ + (-15)³ + (-13)³
Same from above
x + y + z = 28 + (-15) + (-13)
x + y + z = 28 - 15 - 13
x + y + z = 28 - 28
x + y + z = 0
So,
x³ + y³ + z³ = 3(28)(-15)(-13)
x³ + y³ + z³ = 72 × 195
x³ + y³ + z³ = 16380