Math, asked by MastersParadise, 1 month ago

Please answer the following attachment. i really need this answer. The Best explanation will be marked brainliest!

Attachments:

Answers

Answered by CopyThat
8

Step-by-step explanation:

Question:

If \bold{\dfrac{\sqrt{11}-\sqrt{7}  }{\sqrt{11}+\sqrt{7}  }=x-y\sqrt{77} ,find\;the\;values\;of\;x\;and\;y. }

Solution:

  • Rationalizing the denominator.

\mapsto \bold{\dfrac{\sqrt{11}-\sqrt{7}  }{\sqrt{11}+\sqrt{7}  }\times\dfrac{\sqrt{11}-\sqrt{7}}{\sqrt{11}-\sqrt{7}}  }

\mapsto \bold{\dfrac{(\sqrt{11}-\sqrt{7})^{2}}{(\sqrt{11^{2})}-(\sqrt{7^{2})}} }

  • (a - b)² = a² + b² - 2ab
  • (a + b)(a - b) = a² - b²

\mapsto \bold{\dfrac{(\sqrt{11})^{2}+(\sqrt{7})^{2}-2(\sqrt{11})(\sqrt{7})}{11-7} }

\mapsto \bold{\dfrac{18-2\sqrt{77} }{4} }

\mapsto \bold{\dfrac{2(9-\sqrt{77})}{4}  }

\mapsto \bold{\dfrac{9-\sqrt{77} }{2} }

  • This can be written as.

\mapsto \bold{\dfrac{9}{2}-\dfrac{\sqrt{77} }{2} =a-b\sqrt{77}  }

  • On comparing L.H.S to R.H.S, we get.

\Rrightarrow \bold{a=\dfrac{9}{2}\;and\;b=\dfrac{1}{2}  }

Similar questions