Math, asked by aajaykrishna70, 10 months ago

please answer the following questions ​

Attachments:

Answers

Answered by sidflame
1

Answer:

Step-by-step explanation:

tanθ+sinθ=m

tanθ-sinθ=n

∴ m+n=tanθ+sinθ+tanθ-sinθ=2tanθ

m-n=tanθ+sinθ-tanθ+sinθ=2sinθ

mn=(tanθ+sinθ)(tanθ-sinθ)

   =tan²θ-sin²θ

∴ m²-n²

=(m+n)(m-n)

=2tanθ.2sinθ

=4sinθtanθ

4√mn

=4√(tan²θ-sin²θ)

=4√(sin²θ/cos²θ-sin²θ)

=4√sin²θ(1/cos²θ-1)

=4sinθ√(1-cos²θ)/cos²θ

=4sinθ/cosθ√sin²θ            [∵ sin²θ+cos²θ=1]

=4sinθtanθ

= 4√mn

∴ LHS=RHS (proved)

PLEASE MARK AS BRAINLIEST!!!

Answered by yakshetha15
0

Answer:

Step-by-step explanation:

tanθ-sinθ=n

∴ m+n=tanθ+sinθ+tanθ-sinθ=2tanθ

m-n=tanθ+sinθ-tanθ+sinθ=2sinθ

mn=(tanθ+sinθ)(tanθ-sinθ)

  =tan²θ-sin²θ

∴ m²-n²

=(m+n)(m-n)

=2tanθ.2sinθ

=4sinθtanθ

4√mn

=4√(tan²θ-sin²θ)

=4√(sin²θ/cos²θ-sin²θ)

=4√sin²θ(1/cos²θ-1)

=4sinθ√(1-cos²θ)/cos²θ

=4sinθ/cosθ√sin²θ            [∵ sin²θ+cos²θ=1]

=4sinθtanθ

= 4√mn

∴ LHS=RHS (proved)

Similar questions