Math, asked by khushbumahak, 4 months ago

➡️please answer the last(16th) question.
☯️And also please help me by reporting my all questions except this one.
{}  \bf \red{ \gamma \:  do \: not \: spam \:  \gamma }

Attachments:

Answers

Answered by Delnababu
3

water required each day = 1200 X 150

water available in the tank = 30 X 25 X10 X 1000

no. of days = amount of water

------------------------------

Daily need

30 X 25 X 10 X 1000

--------------------------------

1200 X 150

= 7,500,000

--------------------

180,000

= 41.666

Please mark as brainiest :-)

Answered by Yuseong
17

Given Information:

• Total population of locality = 1,200

• Water required by per head, per day = 150 l

• Dimensions of the tank = 30 m × 25 m × 10 m

Solution:

Here,as the water required by per head daily is 150 l. So, water required by total population would be :

 \sf{ \longrightarrow \: (total \: population \times water \: required \: by \: per \: head) \:  litres} \\  \\  \sf{ \longrightarrow \:(1200 \times 150) \: litres } \\  \\  \sf{ \longrightarrow \:180000 \: litres } \:  \:  \:   \green{ \bigstar}

Now, let us calculate the volume of the tank in order to calculate the days the water of this tank will last.

 \sf{ \longrightarrow \: Volume_{(Tank)} = l \times b \times h \: cubic \: units} \\  \\  \sf{ \longrightarrow \: Volume_{(Tank)} = (30 \times 25 \times 10) \:  {m}^{3} } \\  \\  \sf{Volume_{(Tank)} = 7500 \:  {m}^{3} }

Here, we got the volume in metre cube. But, we'll change it into litres as the water required by the population is also in litres.

 \:  \:  \:  \:  \:  \:  \:  \underline{ \sf{Conversion \: of \:  {m}^{3}  \: into \: litres}} \\  \\  \sf{ \longrightarrow \:  {1 \: m}^{3}  = 1000 \: l} \\  \\ \sf{ \longrightarrow \:  {7500 \: m}^{3}  =( 7500 \times 1000) \: l} \\  \\ \sf{ \longrightarrow \:  {7500 \: m}^{3}  = 7500000 \: l}   \:  \:  \:  \green{ \bigstar}

Now, let us assume the number of the day the water of the tanks will last be "x". So,

→ Water required by total population × the number of days = Volume of tank (in litres)

 \sf{ \longrightarrow \: 180000 \: litres \times x = 7500000 \: litres} \\  \\  \sf{ \longrightarrow \:  x =  \dfrac{7500000 \:}{180000 \: } \: days} \\  \\  \sf{ \longrightarrow \:  x =  \dfrac{750 \:}{18 \: } \: days} \\  \\  \longrightarrow \:   \underline{ \boxed{ \sf{x =  41.66 \: or \: 41 \: days} }} \:  \red{ \bigstar}

Therefore, for 41 days , the water of the tank will last

Attachments:
Similar questions