please answer the question.
Attachments:
Answers
Answered by
1
We know that x^3+y^3+z^3=3xyz
if x+y+z=0.
Now (a^2-b^2 ) + ( b^2 -c^2)+(c^2-a^2)
a^2-a^2+b^2-b^2+c^2-c^2
=0.
(a^2-b^2)^3+(b^2-c^2)^3 +(c^2-a^2)^3=
3(a^2-b^2)(b^2-c^2)(c^2-a^2)
Similarly we can say that
(a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a).
therefore, the question becomes
3(a^2-b^2)(b^2-c^2)(c^2-a^2)/3(a-b)(b-c)(c-a)
3(a+b)(a-b)(b+c)(b-c)(c+a)(c-a)/
3(a-b)(b-c)(c-a)
=(a+b)(b+c)(c+a){common terms get cancelled}
this is the required answer.
Hope it helped.
Similar questions