Math, asked by sreekarreddy91, 4 months ago

Please answer the question

Quality answer needed
Spammers will be reported​

Attachments:

Answers

Answered by BeccarPexity
3

Answer:

1. -48

2. 65 is range

3. x+5 = (-12)

=> x= -12-5

=> x= -17

4.A scalene triangles has all sides are unequal.

5.Sum of angles of a triangle = 180⁰

Let the other angle be x

Then , 48⁰+42⁰+x = 180⁰

=> 90⁰+x = 180⁰

=> x= 180⁰-90⁰ =90⁰

Hence, that other angle is 90⁰

6. Angle Y is included between XY and YZ

7. Dot it yourself.

8. Refer to attachment

9. Side given = 4cm

Side given = 4cm Perimeter of equilateral triangle = 3× side = 3×4

Side given = 4cm Perimeter of equilateral triangle = 3× side = 3×4 =12cm

10. No we can't

Because of the fact that the sum of the three interior angles of a triangle must be 180 degrees, a triangle could not have two right angles.

11. Given Rational number = 2/5

We can write 2/5 as 2/5 × 5/5

= 10/25

12. 12/20 ,15/25, 18/30, 21/35

13. 36and 144

14. Refer to attachment

15. Refer to attachment

16. Refer to attachment

Attachments:
Answered by ApprenticeIAS
7

 \underline{ \underline{ \sf \red{  1^{st}  \:Answer }}} \red :

 \rm \: ( - 1)x( - 2)x( - 3)x( - 4)x( - 1) {x}^{2}

 =  \rm \:  - 24 \:  {x}^{6}

 \underline{ \underline{ \sf \red{  2^{nd}  \:Answer }}} \red :

 \boxed{ \boxed{ \rm{Range = Highest  \: value - Lowest  \: value}}}

 \implies \rm \: 70 - 5

 = 65

 \underline{ \underline{ \sf \red{  3^{rd}  \:Answer }}} \red :

 \implies \rm x + 5 = ( - 12)

 \rm x =  - 12 - 5

 \rm \: x =  - 17

 \underline{ \underline{ \sf \red{  4^{th}  \:Answer }}} \red :

  \sf \: The \:  triangle \:  who  \: side  \: is  \: not  \: equal \:  to  \: any \:  of  \: its  \: two \:  sides

 \sf \: in \: general : all \: sides \: of \: triangle \: measures \: differently \: to \: each \: other

 \underline{ \underline{ \sf \red{  5^{th}  \:Answer }}} \red :

 \rm \: Given

 \rm  \: Two  \: angles  \: of  \: triangle  \: are  \: 48 °  \&  \: 42°

 \rm{Let  \: third  \: angle  \: be \:  x°}

 \rm \: sum \: of \: angles \: in\: a \: triangle \:  = 180°

 \rm{48 + 42 + x = 180}

 \rm{90 + x = 180}

 \rm{x = 90°}

 \underline{ \underline{ \sf \red{  6^{th}  \:Answer }}} \red :

 \sf \angle \: y \: is \: beween \: XY  \: and  \: YZ

 \underline{ \underline{ \sf \red{  8^{th}  \:Answer }}} \red :

 \rm \: 3 {x}^{2}  - 2x - 7  \:  \:  \:  \:  \:  \:  \:   \:  \\ \\ 3(2)^{2}  - 2(2) - 7

 = 3(4) - 4 - 7

 = 12 - 11

 = 1

 \underline{ \underline{ \sf \red{  9^{th}  \:Answer }}} \red :

 \boxed{ \boxed{ \sf \: Perimetre = Sum  \: of  \: all \:  sides}}

 \rm \implies perimetre \:  = 4 + 4 + 4

 = 12

 \underline{ \underline{ \sf \red{  10^{th}  \:Answer }}} \red :

No we cannot construct a triangle with two right angles (90°, 90°) because we know that sum of angles in a triangle is 180°. If there are two right angles then it directly sum up to 180°. So we cannot construct a triangle with two right angles.

 \underline{ \underline{ \sf \red{  11^{th}  \:Answer }}} \red :

 \dfrac{2}{5} \times  \dfrac{5}{5}  =  \dfrac{10}{25}

 \underline{ \underline{ \sf \red{  12^{th}  \:Answer }}} \red :

 \dfrac{3}{5} , \:  \dfrac{6}{10} , \:  \dfrac{9}{15} , \:  \dfrac{12}{20}, \:   \dfrac{15}{25} , \:  \dfrac{18}{30} , \dfrac{21}{35}

 \underline{ \underline{ \sf \red{  13^{th}  \:Answer }}} \red :

Let the measure of the required angle be x°.

Then, the measure of its supplement is (x/4)°

Therefore, x + x/4 = 180

==> 4x + x= 720

==> 5x = 720

==> x = 144

 \underline{ \underline{ \sf \red{  14^{th}  \:Answer }}} \red :

  \dfrac{5}{2}   + \dfrac{2}{3}

 =  \dfrac{15 + 4}{6}

 =  \dfrac{19}{6}

 \underline{ \underline{ \sf \red{  15^{th}  \:Answer }}} \red :

 \rm \: 3n - 10 \:  \: at \:  \: n = 5

 \implies \: 3(5) - 10

 = 15 - 10

 = 5

 \underline{ \underline{ \sf \red{  16^{th}  \:Answer }}} \red :

 \sf \: Area \:  of \:  parllelogram \:  = 4 \:  {cm}^{2}

 \sf \: Base \:  =  \: 12 \: cm

 \sf \: let  \: Height  \: be  \: x  \: cm

 \sf \: We \:  know \:  that \:  \:  Area = base × height

 \sf \: 12 \times x = 4

 \sf \: x =  \dfrac{4}{12}

 \sf x =  \dfrac{1}{3}

Similar questions