Math, asked by bujidora30, 8 months ago

please answer the questions​

Attachments:

Answers

Answered by vijaylalkannoniya
0

Answer:

6

Step-by-step explanation:

this is right answer math

Answered by Darkrai14
1

Given:-

\sf \dfrac{ \bigg ( x-2\sqrt{6} \bigg ) \bigg (5\sqrt{3} + 5\sqrt{2} \bigg )}{5\sqrt{3} - 5\sqrt{2}} = 1

To find:-

The value of x.

Solution:-

\sf \dfrac{ \bigg ( x-2\sqrt{6} \bigg ) \bigg (5\sqrt{3} + 5\sqrt{2} \bigg )}{5\sqrt{3} - 5\sqrt{2}} = 1

\sf \dashrightarrow  \bigg ( x-2\sqrt{6} \bigg ) \bigg (5\sqrt{3} + 5\sqrt{2} \bigg )= 1\bigg (5\sqrt{3} - 5\sqrt{2}\bigg )

\sf \dashrightarrow  x(5\sqrt{3}) + x(5\sqrt{2}) -2\sqrt{6}(5\sqrt{3})  -2\sqrt{6}(5\sqrt{2})=  5\sqrt{3} - 5\sqrt{2}

\sf \dashrightarrow  5\sqrt{3}x + 5\sqrt{2}x-30\sqrt{2} -20\sqrt{3}=  5\sqrt{3} - 5\sqrt{2}

\sf \dashrightarrow  5\bigg (\sqrt{3}x + \sqrt{2}x-6\sqrt{2} -4\sqrt{3}\bigg )=  5\bigg (\sqrt{3} - \sqrt{2} \bigg )

\sf \dashrightarrow  \sqrt{3}x + \sqrt{2}x-6\sqrt{2}  -4\sqrt{3}=  \dfrac{\cancel{5}\bigg (\sqrt{3} - \sqrt{2} \bigg )}{\cancel{5}}

\sf \dashrightarrow  \sqrt{3}x + \sqrt{2}x-6\sqrt{2} -4\sqrt{3}=  \sqrt{3} - \sqrt{2}

\sf \dashrightarrow  \sqrt{3}x + \sqrt{2}x= 6\sqrt{2}+4\sqrt{3}+\sqrt{3} - \sqrt{2}

\sf \dashrightarrow  \sqrt{3}x + \sqrt{2}x= 6\sqrt{2}  - \sqrt{2} +4\sqrt{3}+\sqrt{3}

\sf \dashrightarrow  \sqrt{3}x + \sqrt{2}x= 5\sqrt{2} +5\sqrt{3}

\sf \dashrightarrow  x \bigg (\sqrt{3}+ \sqrt{2}\bigg )= 5\bigg ( \sqrt{2} + \sqrt{3} \bigg )

\sf \dashrightarrow  x =\dfrac{5\cancel{\bigg ( \sqrt{2} + \sqrt{3} \bigg )}}{\cancel{ \bigg (\sqrt{3}+ \sqrt{2}\bigg )} }

\bf\bullet \dashrightarrow  \quad\boxed{\bf x =5}

Hence, 5 is correct answer.

Similar questions