Math, asked by shatakshisahu2324, 5 months ago

please answer the questions​

Attachments:

Answers

Answered by aryan073
3

Given :

Q9) \rm{(\dfrac{1}{2})^{-3}}

Solution :

  \underline{\bf{options : }}

 \bf \: (1) \bigg(  { \frac{ - 1}{2}} \bigg)^{ - 3}  \:  \: (2) \bigg( { \frac{1}{ - 2} } \bigg)^{3}   \: \: (3)  \:  \: { \bigg( 2 \bigg)}^{ - 3}  \:  \:  \: (4) \: none \: of \: these

  \\ \implies \sf \:  \bigg( { \frac{ 1}{2} } \bigg)^{ - 3}  =  \frac{1}{  \bigg( { \frac{1}{2} } \bigg)^{3}  }   =  \bigg(  { \frac{2}{1} } \bigg)^{3}  = 8

 \implies \sf \:  {2}^{3}  \: is \: the \: correct \: answer \checkmark\\  \\  \bullet{ \underline{ \bf{option  : (d) }\: none \: of \: these \: }}

________________________________________

Given :

Q10) \rm{\bigg\{ 3^{-2}+\bigg(\dfrac{1}{2}\bigg) \bigg\} \times 3^{2}}

Solution :

  \underline{\bf { options : }}

 \bf \: (a) \:  \frac{1}{10}  \:   \: \:(b)10 \:  \:  \: (c)1 \:  \: \:  \:  (d)none \: of \: these

 \\  \implies \sf \bigg \{ {3}^{ - 2}  +  \bigg( \frac{1}{2}  \bigg) \bigg \} \times  {3}^{2}  \\  \\  \\  \implies \sf \:  \bigg \{ \frac{1}{ {3}^{2} }  +  \frac{1}{2}  \bigg \} \times 9 \\  \\  \\  \implies \sf \bigg \{ \frac{1}{9}  +  \frac{1}{2}  \bigg \} \times 9 \\  \\   \\  \implies \sf \bigg \{ \frac{2 + 9}{18}  \bigg \} \times 9 \\  \\  \\  \implies \sf \:   \frac{11}{ \cancel18}  \times \cancel 9 \\  \\  \\   \implies\boxed{ \sf{ \frac{11}{2}  = 5.5}}

  \\ \implies \sf \: (d) \: none \: of \: these  \: is \: the \: correct \: answer \checkmark

________________________________________

Given :

Q11) 0.0000123 in standard form is :

Solution :

 \implies \sf \: 0.0000123 \\  \\  \implies \sf \:  \frac{123}{10000000}  =  \frac{123}{ {10}^{7} }  \\  \\  \implies \sf \: 123 \times  {10}^{ - 7} \\  \\  \implies \sf \: 12.3   \times   {10}^{ - 6}

 \bf \: option(b) \: is \: a \: correct \: answer \checkmark

________________________________________

Given :

Q12)\sf{\bigg\{\bigg(\dfrac{-2}{3}\bigg)^{a}\bigg\}^{-b}}

Solution :

 \implies \sf \bigg \{ {  \bigg({  \frac{ - 2}{3} } \bigg)^{a} } \bigg \}^{ - b}  \\  \\  \\  \implies \sf \bigg \{ { \bigg( { \frac{ - 2}{3} } \bigg)^{a} } \bigg \}^{ - b}  \\  \\  \\  \implies \sf \bigg(  { \frac{ - 2}{3} } \bigg)^{ a \times  - b}   \\  \\  \\  \underline {\bf \: { \: option \: (c) \: is \: correct \: answer \checkmark}}

________________________________________

Given:

 \\ (13) \sf \bigg(  \frac{ {2}^{2x - 1}  + 10}{7}  \bigg) = 6

Solution :

  \\ \implies \sf \bigg( \frac{ {2}^{2x - 1}  + 10}{7}  \bigg) = 6 \\  \\  \\  \implies \sf \big( {2}^{2x - 1}  + 10 \big) = 42 \\  \\   \\  \implies \sf \:  {2}^{2x  - 1}   = 42 - 10 \\  \\  \\  \implies \sf \:  {2}^{2x - 1}  = 32 \\  \\  \\  \implies \sf \:  {2}^{2x - 1}  =  {2}^{5}  \\  \\  \\  \implies \sf \: 2x - 1 = 5 \\  \\  \implies \sf \: 2x  - 1 - 5 = 0 \\  \\  \implies \sf \: 2x = 6 \\  \\   \implies \boxed{ \sf{x = 3}}

 \underline{ \bf{option(b) \: is \: correct \: answer \checkmark}}

________________________________________

Given :

Q14) \sf{2 \times 10^{-4} \: in \: usual \: form \: is}

Solution :

 \implies \sf \: 2 \times  {10}^{ - 4 }  \\  \\  \implies \sf \:  \frac{2}{ {10}^{4} }  =  \frac{2}{10000}  = 0.0002

 \underline{ \bf{option \: (b) \: is \: correct \: answer \checkmark}}

________________________________________

Similar questions