Please answer these 2 questions
Answers
Answer:
Answer of no 2.1is 10/3
Given : x = (√5 - 2) /(√5 + 2) , x = √2 + 1
To find : x + 1/x , x² + 1/x² , x³ + 1/x³
Solution:
x = (√5 - 2) /(√5 + 2)
Multiplying & Dividing by √5 - 2
=> x = (√5 - 2)²/(√5 + 2)(√5 - 2)
=> x = ( 5 + 4 - 4√5)/(5 - 4)
=> x = 9 - 4√5
x = (√5 - 2) /(√5 + 2)
=> 1/x = (√5 + 2)/ (√5 - 2)
Multiplying & Dividing by √5 + 2
=> 1/x = (5 + 4 + 4√5)/(5 - 4)
=> 1/x = 9 + 4√5
x + 1/x = 9 - 4√5 + 9 + 4√5 = 18
=> x + 1/x = 18
x² + 1/x² = (x + 1/x)² - 2x(1/x)
= 18² - 2
= 324 - 2
= 322
x² + 1/x² = 322
x = √2 + 1
1/x = 1/(√2 + 1) = √2 - 1
x + 1/x = √2 + 1 + √2 - 1 = 2√2
x² + 1/x² = (x + 1/x)² - 2x(1/x)
= (2√2)² - 2
= 8 - 2
= 6
x² + 1/x² = 6
x³ + 1/x³ = (x + 1/x)³ - 3x(1/x)(x + 1/x)
=> x³ + 1/x³ = (2√2)³ - 3 (2√2)
= 16√2 - 6√2
= 10√2
x³ + 1/x³ = 10√2
Learn More:
x^4+1/x^4
https://brainly.in/question/8170037
if x=1/4-x, find : x+1/x - Brainly.in
https://brainly.in/question/5639594