Math, asked by raji2648, 1 year ago

please answer this ​

Attachments:

Answers

Answered by Anonymous
4

Answer:

a=0 and b= -2/3

Step-by-step explanation:

First let us understand what rationalising is,

Rationalising is a mathematical procedure in which a denominator of a fraction is multiplied or divided to remove the radical signs.

______________________________________________

Now,with this clarified,let us solve the problem:

Given that,

 \sf{ \frac{ \sqrt{7} - 1 }{ \sqrt{7 + 1}  } -  \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1 }  = a + b \sqrt{7}  }

To find out the values of a and b

Now on rationalising independently,

 \sf{  \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 }  \times  \frac{ \sqrt{7}  -  1 }{ \sqrt{7}  - 1}} \\  \\  =  \sf{ \frac{( \sqrt{7} - 1) {}^{2}  }{ \sqrt{7 {}^{2} - 1 {}^{2}  } } } \\  \\  =  \sf{ \frac{7 + 1 - 2 \sqrt{7} }{6} } \\  \\  =  \sf{ \frac{8 - 2 \sqrt{7} }{6} =  \frac{4 -  \sqrt{7} }{3}  }

Second part of the expression,

 \sf{ \frac{ \sqrt{7} + 1 }{ \sqrt{7} - 1 }}  \\  \\  =  \sf{ \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}  \times  \frac{ \sqrt{7}  + 1}{ \sqrt{7} +  1}} \\  \\  =   \sf{\frac{( \sqrt{7} + 1) {}^{2}  }{ \sqrt{7 {}^{2} } - 1 {}^{2}  }}  \\  \\  \sf{ =  \frac{8 + 2 \sqrt{7} }{6}  =  \frac{4 +  \sqrt{7} }{3} }

Replacing with simplified values,we get:

 \sf {\frac{4 -  \sqrt{7} }{3}  -  \frac{4 +  \sqrt{7} }{3} } \\  \\  =  \sf{ \frac{4 -  \sqrt{7}  - (4 +  \sqrt{7)} }{3} } \\  \\  = \sf{ \frac{ - 2 \sqrt{7} }{3} }

The values are 0 and -2/3 respectively

_______________________________________________

•Identities used:

(a+b)²=a²+2ab+b²

(a-b)²=a²-2ab+b²

(a+b)(a-b)=a² - b²

_________________________________________________

Similar questions