Math, asked by yuvti, 11 months ago

please answer this ​

Attachments:

Answers

Answered by Anonymous
1

Answer :

Step-by-step explanation: hey mate hope this helps you. Please mark me as brainliest.

Attachments:
Answered by Anonymous
67

\huge{\frak{\underline{\underline{\:ANSWER}}}}

\large\sf{\underline{\:Given}}

\mapsto\pink{\sf{\:\left(\dfrac{1+\sqrt{3}}{1-\sqrt{3}}\right)\:=\:A+B\sqrt{3}}}

\large\sf{\underline{\:Find}}

\mapsto\pink{\sf{\:Value\:Of\:A\:and\:B}}

\huge{\frak{\underline{\underline{\:ExplanaTiOn}}}}

\pink{\sf{\:\left(\dfrac{1+\sqrt{3}}{1-\sqrt{3}}\right)\:=\:A+B\sqrt{3}}}

\:\:\:\:\:\:\:\green{\textsf{\small{\:(Rationalization Of Denominator) }}}

\mapsto\sf{\:\left(\dfrac{1+\sqrt{3}}{1-\sqrt{3}}\right)\:\times\left(\dfrac{1+\sqrt{3}}{1+\sqrt{3}}\right)\:=\:A+B\sqrt{3}}

\mapsto\sf{\:\left(\dfrac{1^2+(\sqrt{3})^2+2\times\sqrt{3}}{1^2-(\sqrt{3})^2}\right)\:=\:A+B\sqrt{3}}

\mapsto\sf{\:\left(\dfrac{1+3+2\sqrt{3}}{1-3}\right)\:=\:A+B\sqrt{3}}

\mapsto\sf{\:\left(\dfrac{4+2\sqrt{3}}{-2}\right)\:=\:A+B\sqrt{3}}

\:\:\:\:\:\:\:\green{\textsf{\small{\:(Take 2  common ) }}}

\mapsto\sf{\:\left(\dfrac{\cancel{2}(2+\sqrt{3})}{-\cancel{2}}\right)\:=\:A+B\sqrt{3}}

\mapsto\sf{\:\left(2-\sqrt{3}\right)\:=\:A+B\sqrt{3}}

\:\:\:\:\:\:\:\green{\textsf{\small{\:(Compare both side  ) }}}

\Large\sf{\underline{\underline{\:Value\:of\:A\:and\:B}}}

\mapsto\orange{\textsf{\:Value of A = 2}}

\mapsto\orange{\textsf{\:Value of B = -1}}

______________________

Similar questions