Physics, asked by yashreebhatt434, 9 months ago

please answer this...​

Attachments:

Answers

Answered by Anonymous
15

\bold{\huge{\underline{\underline\red{ANSWER: }}}}

\vec{A} \:  = \hat{\imath}+2\hat{\jmath}+3\hat{k}

Multiplying the vector by 2

2(\vec{A} )\:  = 2(\hat{\imath} )+2(2\hat{\jmath} )+2(3\hat{k})

 = 2\vec{A} \:  = 2\hat{\imath}+4\hat{\jmath}+6\hat{k}

Magnitude of a vector  \vec{A} \:  = x\hat{\imath}+y\hat{\jmath}+z\hat{k} = \sqrt{ {x}^{2} +  {y}^{2}  +  {z}^{2}  }

Magnitude of   2\vec{A} \:  = 2\hat{\imath}+4\hat{\jmath} +6\hat{k} =

 \sqrt{ {2}^{2}  +  {4}^{2}  +  {6}^{2} }

=  \sqrt{4 + 16 + 36} = \sqrt{56}

 =  \sqrt{4 \times 14}  = 2 \sqrt{14}

ADDITIONAL INFORMATION :-

\longrightarrow Vector is a quantity that requires both magnitude and direction.

\longrightarrowIf a vector is displaced parallel to itself the value of vector does not change.

\longrightarrowResultant Vector of two vectors =  \sqrt{ {A}^{2}  +  {B}^{2}  + 2  AB COS\theta}

\longrightarrowMultiplaction of a vector by a algebraic

= m\vec{A} \:  = m\hat{\imath}+m\hat{\jmath}+m\hat{k}

\bold{\huge{\underline{\underline\red{THANKS}}}}

Similar questions