Math, asked by calllmememme, 4 months ago

please answer this​

Attachments:

Answers

Answered by itzpriya22
3

We have been given to prove that:-

sin^{2}\bigg( \dfrac{2 \pi}{7} \bigg) + sin^{2} \bigg( \dfrac{3 \pi}{14} \bigg) + sin^{2} \bigg( \dfrac{11 \pi}{14}\bigg) + sin^{2} \bigg( \dfrac{5 \pi}{7} \bigg) = 2

As, we know that sin (90 \degree + \theta) = cos \theta

Left hand side of the expression can be re-written as:-

= sin^{2}\bigg( \dfrac{2 \pi}{7} \bigg) + sin^{2} \bigg( \dfrac{3 \pi}{14} \bigg) + sin^{2} \bigg(\dfrac{\pi}{2} + \dfrac{2\pi}{7}\bigg) + sin^{2} \bigg(\dfrac{\pi}{2}+\dfrac{3 \pi}{14} \bigg)

= sin^{2} \bigg( \dfrac{2 \pi}{7} \bigg) +sin^{2} \bigg( \dfrac{3\pi}{14} \bigg) + cos^{2} \bigg( \dfrac{2 \pi}{7}\bigg) + cos^{2} \bigg( \dfrac{3 \pi}{14} \bigg)

Now, group the terms as follows:-

= \Bigg[cos^{2} \bigg( \dfrac{5 \pi}{7} \bigg) + sin^{2} \bigg( \dfrac{5 \pi}{7} \bigg) \Bigg] + \Bigg[ cos^{2} \bigg( \dfrac{11 \pi}{14} \bigg) + sin^{2} \bigg( \dfrac{11 \pi}{14}\bigg) \Bigg]

As we know, sin^{2} \theta + cos^{2} \theta = 1

This expression gets reduced to:-

= 1 + 1

= 2

This is equal to the right hand side.

L.H.S = R.H.S

Hence Proved !

Similar questions