Math, asked by Anonymous, 4 months ago

please answer this dear friends
don't spam​

Attachments:

Answers

Answered by Anonymous
77

Given :-

If a, b, c are positive real numbers such that

  • \sf \dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}

To find :-

  • Value of \sf \dfrac{(a+b)(b+c)(c+a)}{abc}

Solution :-

\\\implies\sf \dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\\\\

Solve this step by step

\\\implies\sf \dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}\\\\

\implies\sf b(a+b-c)=c(a-b+c)\\\\

\implies\sf ba+b^2-cb=ca-bc+c^2\\\\

\implies\sf ba+b^2-cb+bc= ca+c^2\\\\

\implies\sf ba+b^2= ca+c^2\\\\

\implies\sf b^2-c^2=ca-ba\\\\

\implies\sf b^2-c^2= -a(-c+b)\\

  • Apply identity
  • - b²=(a + b)(a - b)

\\\implies\sf (b+a)(b-c)= -a(-c+b)\\\\

\implies\sf -a=\dfrac{(b-c)(b+a)}{(-c+b)}\\\\

\therefore\sf{\underline{\boxed{\sf a=-(b+a)}}}\\\\

Similarly

\implies\sf \dfrac{a+b-c}{c}=\dfrac{-a+b+c}{a}\\\\

\implies\sf c(-a+b-c)=a(a-b+c)\\\\

\implies\sf -ca+cb+c^2=a^2+ab-ac\\\\

\implies\sf -ca+ac+cb+c^2=a^2+ab\\\\

\implies\sf cb+c^2= a^2+ab\\\\

\implies\sf c^2-a^2=ab-cb\\\\

\implies\sf c^2-a^2= -b(-a+c)\\

  • Apply identity
  • - b²=(a + b)(a - b)

\\\implies\sf (c+a)(c-a)= -b(-a+c)\\\\

\implies\sf -b=\dfrac{(c+a)(c-a)}{(-a+c)}\\\\

\therefore\sf{\underline{\boxed{\sf{b=-(c+a)}}}}\\\\

Now

\implies\sf \dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\\\\

\implies\sf a(a-b+c)=b(-a+b+c)\\\\

\implies\sf a^2-ab+ac=-ba+b^2+bc\\\\

\implies\sf a^2-ab+ba+ac=b^2+bc\\\\

\implies\sf a^2+ac= b^2+bc\\\\

\implies\sf a^2-b^2=bc-ac\\\\

\implies\sf a^2-b^2= -c(-b+c)\\

  • Apply identity
  • - b²=(a + b)(a - b)

\\\implies\sf (a+b)(a-b)=-c(-b+c)\\\\

\implies\sf -c=\dfrac{(a+b)(a-b)}{(-b+c)}\\\\

\therefore\sf{\underline{\boxed{\sf{c=-(a+b)}}}}\\\\

The value of

\\\implies\sf \dfrac{(a+b)(b+c)(c+a)}{abc}\\\\

Putting the value of a, b & c

\\\implies\sf \dfrac{(a+b)(b+c)(c+a)}{[-(b+c)][-(c+a)][-(b+a)]}\\\\

Cancel (a + b), (b + c) & (c + a)

\\\implies\sf -1

______________________________________

Answered by VanillaRoy08
2

Answer:

I want to be your friend

Step-by-step explanation:

inbox

Similar questions
Math, 10 months ago