Math, asked by shikharnigam2006, 11 months ago

please answer
this .I hav ebeen trying for long

Attachments:

Answers

Answered by Anonymous
5

Question:

Simplify

  • (a)\large{ \frac{3 {x}^{3} - 6 {x}^{2}  - 24x }{(x - 4)(x + 2)}}

  • (b) \large{\frac{ {p}^{4} - 256 }{ {p}^{3}  + 4 {p}^{2}  + 16p + 6y}}

Answer:

\large\bold\red{(a)\:3x}\\\\\large\bold\red{(b)\frac{(p + 4)(p - 4)( {p}^{2}  + 16)}{p( {p}^{2} + 4p + 16) + 6y }}

Step-by-step explanation:

(a ) \frac{3 {x}^{3}  - 6 {x}^{2} - 24x }{(x - 4)(x + 2)}  \\  \\  =  \frac{3x( {x}^{2}  - 2x - 8)}{(x - 4)(x + 2)}  \\  \\  =   \frac{3x( {x}^{2} - 4x + 2x - 8) }{(x - 4)(x + 2)}  \\  \\  =  \frac{3x(x(x - 4) + 2(x - 4))}{(x  - 4)( x + 2)}  \\  \\  =  \frac{3x(x - 4)(x + 2)}{(x - 4)(x + 2)}  \\  \\  =  \large \boxed{ \bold{3x}}

(b) \frac{ {p}^{4}  - 256}{ {p}^{3} + 4 {p}^{2} + 16p + 6y  }  \\  \\  =  \frac{ {( {p}^{2} )}^{2}  -  {(16)}^{2} }{ p({p}^{2}  + 4p + 16) + 6y}  \\  \\  =  \frac{( {p}^{2} + 16)( {p}^{2}  - 16) }{p( {p}^{2} + 4p + 16) + 6y }  \\  \\  = \frac { ( {p}^{2}  + 16)( {p}^{2}  -  {4}^{2} )}{p( {p}^{2} + 4p + 16) + 6y } \\  \\  =  \large \boxed{ \bold{ \frac{(p + 4)(p - 4)( {p}^{2}  + 16)}{p( {p}^{2} + 4p + 16) + 6y } }}

Answered by RvChaudharY50
32

Question :---- Above ↑↑↑↑

Solution of Question (1)

 \frac{3 {x}^{3}  - 6 {x}^{2} - 24x }{(x - 4)(x + 2)}  \\  \\ taking \: 3x \: common \: from \: denominator \\  we \: get \\  \\  \implies \: \frac{3x( {x}^{2}  - 2x - 8)}{(x - 4)(x + 2)} \\  \\ now \: solving \: ( {x}^{2}  - 2x - 8) \: first \\ by \: splitting \: the \: middle \: term \\  \\ \implies \:  {x}^{2}  - 4x + 2x - 8 \\  \\ \implies x(x - 4) + 2(x - 4) \\  \\ \implies \: (x - 4)(x + 2) \\  \\ putting \: in \: numerator \: now \\  \\ \implies \:   \frac{3x \cancel{(x - 4)(x + 2)}}{\cancel{(x - 4)(x + 2)}} \:  \\  \\ \implies \: \red{\bold{3x}}

____________________________________

Formula used here :---

  • (a⁴ - b⁴) = (a²+b)²(a-b)(a+b)

Lets solve numerator and denominator separately ,,

p⁴ - 256

→ p⁴ - (4)⁴

→ (p²+4²)(p-4)(p+4)

→ (p²+16)(p-4)(p+4)

Now, denominator ,,,

p³ + 4p² +16p +6y

taking p common ,

→ p(p² + 4p + 16) + 6y

so, we get,,,

\red{\bold{ \frac{( {p}^{2} + 16)(p - 4)(p + 4) }{p(p^{2} + 4p + 16) + 6y } }}

(Hope it Helps you)

Similar questions