Math, asked by ughmgee, 11 months ago

Please answer this math question asap!! 30 points and brainliest!!
BRAINLIEST ONLY IF YOU SHOW YOUR WORK!
MUST SHOW WORK!

Attachments:

Answers

Answered by BrainlyConqueror0901
48

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\angle B\approx47.9\degree}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Length \: of \:AB= 55\:ft\\  \\ \tt: \implies Length \: of \: BC= 37\:ft\\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies  \angle B= ?

• According to given question :

\bold{As \: we \: know \: that} \\  \tt:  \implies Cos \:  \theta =  \frac{Base}{Hypotenuse} \\  \\  \tt:   \implies Cos \: B =  \frac{BC}{AB}  \\  \\ \tt:   \implies Cos\: B=  \frac{37}{55}  \\  \\ \tt:   \implies Cos \: B= 0.67 \\  \\ \tt:   \implies Cos \: B= Cos \:47.93  \\  \\  \green{\tt:  \implies  \angle B \approx 47.9 \degree}\\  \\   \purple{\bold{Some \: extra \: information}} \\    \pink{\tt{\circ \: Sin \:  \theta =  \frac{p}{h} }} \\  \\ \pink{\tt{\circ \: Cos \:  \theta =  \frac{b}{h} }} \\  \\ \pink{\tt{\circ \: Cot \:  \theta =  \frac{b}{p} }} \\  \\ \pink{\tt{\circ \: Cosec \:  \theta =  \frac{h}{p} }} \\  \\  \pink{\tt{\circ \: Sec \:  \theta =  \frac{h}{b} }} \\  \\    \pink{\tt\circ \:  {Sin}^{2}  \theta + Cos^{2}  = 1}

Answered by Saby123
63

</p><p>\tt{\huge {\pink{Hello!!!}}}

\huge{\fbox{\fbox{\rightarrow{\mathfrak {\green{Question \: - }}}}}}

  • A 55 ft guy wire helps to support a tower.

  • The wire is anchored to the ground 37 ft from above the base of the tower.

  • What is the measure of the angle formed between the wire and the ground to the nearest degree?

\huge{\fbox{\fbox{\rightarrow{\mathfrak {\purple{Answer \: - }}}}}}

Answer:

\green{\tt{\therefore{\angle B\approx47.9\degree }}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given:}}

</p><p>\red{\tt{ Length \: of \:AB= 55\:ft\\ \\ \tt: \implies Length \: of \: BC= 37\:ft }}}

 \red{\underline \bold{To \: Find:}}

Given:

:⟹ Length of AB = 55ft.

:⟹Length of BC = 37ft.

To Find:

:⟹∠B=?

• According to given question :

As we know that :

</p><p>\tt{\red{Cos ( \phi ) = \frac{Base}{Hypotenuse} = \frac{AB}{AC} = \frac{55}{57 } = 0.67 }}}

:⟹Cos47.93

:⟹∠B≈47.9°

Similar questions