Math, asked by bethamsriharsha, 1 year ago

Please answer this. Only genius can answer. Challenge!!​

Attachments:

Answers

Answered by kaushik05
12

Given :

x =  log(1 +  \sin ^{2} (y  ) )

Differentiate w.r.t y both sides .

 \frac{dx}{dy}  =  \frac{d( log(1 +  { \sin} ^{2}y ) }{dy}  \times  \frac{d(1 +  { \sin }^{2}y }{dy}  \\  =  >  \frac{dx}{dy}  =  \frac{1}{1 +  { \sin}^{2} y}  \times (0 + 2 \sin(y)  \cos(y)  \\  =  >  \frac{dx}{dy}  =  \frac{2 \sin(y ) \cos(y)  }{1 +  { \sin}^{2}y }  \\  =  >  \frac{dx}{dy}  =\frac{ \sin(2y) }{1 +  { \sin}^{2}y }  \\  =  >  \frac{dy}{dx}  =  \frac{ {e}^{x} }{ \sin(2y) }

Formula used :

 \frac{d}{dx} ( log(x) ) =  \frac{1}{x }  \\  \frac{d}{dx} sinx = cosx \\  \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1}

soln also is in attachment

Attachments:
Similar questions