Math, asked by Hasini555, 3 months ago

Please answer this only who knows.... ​

Attachments:

Answers

Answered by shreekrishna35pdv8u8
1

Step-by-step explanation:

 \frac{ \sqrt{5  } +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }    \\  =  \frac{ \sqrt{5  } +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }    \times  \frac{ \sqrt{5  } +  \sqrt{3}  }{ \sqrt{5}  + \sqrt{3}  }    \\  =  \frac{ (\sqrt{5  } +  \sqrt{3}) {}^{2}   }{ ( { \sqrt{5} )}^{2} -  (\sqrt{3})   {}^{2} }    \\  =  \frac{(  { \sqrt{5} })^{2}  +  ({ \sqrt{3} )}^{2}  + 2 \times  \sqrt{5  }  \times  \sqrt{3} }{5 - 3}  \\  =  \frac{5 + 3 +2 \sqrt{15}  }{2}  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  =  \frac{2(4 +  \sqrt{15}) }{2}  \\  = 4 +  \sqrt{15}

a + b \sqrt{15}  = 4 +  \sqrt{15}  \\

a = 4

b15=15

b= 1

Similar questions