Math, asked by wwwhritikkhatwani, 11 months ago

please answer this question​

Attachments:

Answers

Answered by kaushik05
19

 \huge \mathfrak { \pink{solution} }\:

Given:

 \boxed{ \bold{4 \tan( \alpha )  = 3 \:}} \\ or \ \\   \boxed{\tan( \alpha )  =  \frac{3}{4} }

To find:

 \frac{2 \sin( \alpha )  +  \cos( \alpha ) }{3 \sin( \alpha ) - 2 \cos( \alpha )  }  \\  \\

Divide both numerator and denominator by

 \cos( \alpha )

we get,

 \leadsto \:  \frac{2 \tan( \alpha ) + 1 }{3 \tan( \alpha ) - 2 }  \\

Now put the value of tan@=4/3

 \leadsto \:  \frac{2  \times  \frac{3}{4}   + 1}{3 \times  \frac{3}{4} - 2 }  \\  \\  \leadsto \:  \frac{ \frac{6}{4}  + 1}{ \frac{9}{4} - 2}  \\  \\  \leadsto \:  \frac{ \frac{6 + 4}{4} }{ \frac{9 - 8}{4} }  \\  \\  \leadsto \:  \frac{ \frac{10}{4} }{ \frac{1}{4} }  \\   \\  \leadsto \: 10

OPTION : B

  \huge\boxed{ \red{ \bold{10}}}

Answered by RvChaudharY50
48

Given :----

  • 4tanA = 3

To Find :----

 \frac{2 \sin(a) +  \cos(a)  }{3 \sin(a)  - 2 \cos(a) }

Formula used :-----

  • sina/cosa = tana

solution :------

Dividing the Question by cosa in numerator and denominator we get, :---

 \frac{2 \tan(a) + 1 }{3 \tan(a)  - 2}

Now, putting value of tana we get,

since 4tana = 3

tana = 3/4

so,

 \frac{2 \times  \frac{3}{4} + 1 }{3 \times  \frac{3}{4}  - 2}  \\  \\  \frac{ \frac{3}{2}  + 1}{ \frac{9}{4}  - 2}  \\  \\  \frac{ \frac{5}{2} }{ \frac{1}{4} }  \\  \\  \frac{5}{2}  \times  \frac{4}{1}  = 10

Hence , value of Question is 10 (Option B)

Similar questions