Math, asked by educationmaster37, 10 months ago

please answer this question​

Attachments:

Answers

Answered by TooFree
5

Find the prime factors of 2197:

2197 = 13 \times 13 \times 13

2197 = 13^3

Find the prime factors of  1728:

1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times  3 \times 3 \times 3

1728 = 2^6 \times  3^3

Write the numbers as a product of its prime factors:

\sqrt[3]{2197} - \sqrt[3]{1728} = \sqrt[3]{13^3} - \sqrt[3]{2^6 \times 3^3}

Solve:

\sqrt[3]{2197} - \sqrt[3]{1728} = \sqrt[3]{13^3} - \sqrt[3]{(2^6 \times 3^3)}

\sqrt[3]{2197} - \sqrt[3]{1728} = \sqrt[3]{13^3} - \sqrt[3]{(2^2 \times 3)^3}

\sqrt[3]{2197} - \sqrt[3]{1728} =13- (2^2 \times 3)

\sqrt[3]{2197} - \sqrt[3]{1728} =13- 12

\sqrt[3]{2197} - \sqrt[3]{1728} = 1

Answer: (D) 1

Answered by Anonymous
12

Answer:

1

Step-by-step explanation:

Given : {\sf{ {\sqrt[3]{2197}} - {\sqrt[3]{1728}}}}

  • When we remove cube root from a number, then the number is raised to the power of 1/3.

\implies{\sf{ (2197)^{ {\frac{1}{3}} } - (1728)^{ {\frac{1}{3}} } }}

  • Cube of 13 = (13)³ = 2197
  • Cube of 12 = (12)³ = 1728

\implies{\sf{ (13^3)^{ {\frac{1}{3}} } - (12^3)^{ {\frac{1}{3}} } }}

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a^m)^n = a^{m \times n}}}}

\implies{\sf{ (13)^{3 \times {\frac{1}{3}} } - (12)^{3 \times {\frac{1}{3}} }}}

\implies{\sf{ (13)^1 - (12)^1}}

\implies{\sf{ 13 - 12}}

\implies{\boxed{\boxed{\sf{1}}}}

Hence, the answer is (D) 1.

Similar questions