Math, asked by Anonymous, 11 months ago

Please answer this Question......​

Attachments:

Answers

Answered by BrainlyPopularman
2

Answer:

GIVES THAT :

 log_{1 - 2x}(6 {x}^{2} - 5x + 1 )  -  log_{1 - 3x}(4 {x}^{2}  - 4x + 1)  = 2

USING BASE CHANGING THEOREM :

  \frac{ log_{2}(6 {x}^{2}  - 5x + 1) }{  log_{2}(1 - 2x) }  -  \frac{ log_{2}(4 {x}^{2} - 4x + 1 ) }{ log_{2}(1 - 3x) }  = 2

 log_{2}(6 {x}^{2}  - 3x)  -  log_{2} (4 {x}^{2}  - x) = 2

  log_{2} ( \frac{6 {x}^{2} - 3x }{4 {x}^{2}  - x} )  = 2

  log_{2} ( \frac{6x - 3}{4x - 1} )  = 2

 \frac{6x - 3}{4x - 1}  =  {2}^{2}

6x - 3 = 4(4x - 1)

10x = 1

x =  \frac{1}{10}

HOPE YOU LIKE IT

Similar questions