Math, asked by niteshshaw723, 8 months ago

please answer this question​

Attachments:

Answers

Answered by gpkusum470
6

Answer:

Given: abx

2

+(b

2

−ac)x−bc=0

Factorizing the given equation,

⟹abx

2

+b

2

x−acx−bc=0

⟹bx(ax+b)−c(ax+b)=0

⟹(bx−c)(ax+b)=0

Solving the above equation for x, we get

⟹(bx−c)=0 or (ax+b)=0

⟹x=

b

c

or x=

a

−b

HOPE IT HELPS YOU . PLZZ MARK AS BRAINLIEST.

Answered by singhkarishma882
4

\huge\purple {SOLUTION}

》》Given Equation :-

 {abx}^{2}  + ( {b}^{2}  - ac)x - bc = 0

》》Finding the value of {x} :-

d =  {b}^{2}  - 4ac

 { {(b}^{2 }  - ac)}^{2}  - 4(ab)( - bc)

 {b}^{4}  +  {a}^{2}  {c}^{2}  -  {2b}^{2} ac +  {4b}^{2} ac

 {b}^{4}  +  {a}^{2}  {c}^{2}   +  {2b}^{2} ac

 { {(b}^{2}  + ac)}^{2}

x =  { - b}^{2}  +  \sqrt{ {b}^{2}  - 4ac}  \:  \:  \:  \:  \:  \: ...........(quadratic \:  formula)

x =  { - b}^{2}  + ac +  \sqrt{ {(b}^{2}  + {ac}^{2)}  }

x =  \frac{ { - b}^{2} + ac -  {b}^{2}   - ac}{2ab}

x =  \frac{  { - 2b}^{2} }{2ab}

x =  \frac{ - b}{a}

and

x =  \frac{ - b + ac +  {b}^{2} + ac }{2ab}

x =  \frac{2ac}{2ab}

x =  \frac{c}{b}

⏩Therefore,

x \frac{ - b}{a}  \:  \:  \:  \: and \:  \:  \:  \: x =  \frac{c}{b}

\huge\mathcal {It\:Might\:Help\:You}

Similar questions