Math, asked by Raunak05Taparia, 8 months ago

please answer this question​

Attachments:

Answers

Answered by prince5132
7

GIVEN :-

 \\  \red \bigstar  \: \displaystyle \tt \: x =  \dfrac{ \sqrt{0.2304 }  +  \sqrt{0.1764} }{ \sqrt{0.2304} -  \sqrt{0.1764}  }  \\

TO FIND :-

 \\  \red \bigstar  \: \displaystyle \tt \: The  \: value \:  of \:  "x" \: . \\

SOLUTION :-

\\  \red \bigstar  \: \displaystyle \tt \: x =  \dfrac{ \sqrt{0.2304 }  +  \sqrt{0.1764} }{ \sqrt{0.2304} -  \sqrt{0.1764}  }  \\  \\

 :  \implies \: \displaystyle \tt  x = \dfrac{ \sqrt{(0.48) ^{2} } +  \sqrt{(0.42) ^{2} }  }{ \sqrt{(0.48) ^{2} }  -  \sqrt{(0.42) ^{2} } }  \\  \\

 :  \implies \: \displaystyle \tt   x = \dfrac{0.48 + 0.42}{0.48 - 0.42}  \\  \\

 :  \implies \: \displaystyle \tt     x = \cancel\dfrac{0.9}{0.06}  \\  \\

 :  \implies \: \boxed{ \red{ \displaystyle \tt x =  15}} \\  \\

 \underline{ \underline{  \displaystyle \tt  \therefore \: The \:  required  \: value  \: of  \: x \:  \: is \:  15. }}\\

VERIFICATION :-

 \\  \red \bigstar  \: \displaystyle \tt \: x =  \dfrac{ \sqrt{0.2304 }  +  \sqrt{0.1764} }{ \sqrt{0.2304} -  \sqrt{0.1764}  }  \\ \\

 :  \implies \: \displaystyle \tt  15 = \dfrac{ \sqrt{(0.48) ^{2} } +  \sqrt{(0.42) ^{2} }  }{ \sqrt{(0.48) ^{2} }  -  \sqrt{(0.42) ^{2} } }  \\  \\

 :  \implies \: \displaystyle \tt   15 = \dfrac{0.48 + 0.42}{0.48 - 0.42}  \\  \\

 :  \implies \: \displaystyle \tt     15 = \cancel\dfrac{0.9}{0.06}  \\  \\

 :  \implies \: \boxed{ \red{ \displaystyle \tt 15 =  15}} \\  \\

L.H.S = R.H.S

HENCE VERIFIED

Similar questions