please answer this question
Attachments:
Answers
Answered by
1
i'm taking a in place of theta ............
LHS = tan^3A/1+tan^2A + cot^3A/1+cot^2A
= tan^3/sec^2+cot^3A/cosec^2A {since 1+tan^2A=sec^2A and 1+cot^2A=cosec^2A}
= (sinA/cosA)^3/(1/cosA)^2+(cosA/sinA)^3/(1/sinA)^2 {since tanA=sinA/cosA , cotA=cosA/sinA , secA=1/cosA and cosecA=1/sinA
= sin^3A/cos^3A/1/cos^2A+cos^3A/sin^3A/1/sin^2A
= sin^3A/cosA+cos^3A/sinA
= (sin^3A*sinA+cos^3A*cosA)/sinA*cosA
= {(sin^2A)^2+(cos^2A)^2}/sinA*cosA
= {(sin^2A+cos^2A)-2sin^2A*cos^2A}/sinA*cosA
{since (a^2+b^2) = (a+b)^2 - 2ab}
= {(1)^2-2sin^2Acos^2A}/sinA*cosA
= (1-2sin^2A*cos^2A)/sinA*cosA
= RHS
Hope this will help you.....!!!!
LHS = tan^3A/1+tan^2A + cot^3A/1+cot^2A
= tan^3/sec^2+cot^3A/cosec^2A {since 1+tan^2A=sec^2A and 1+cot^2A=cosec^2A}
= (sinA/cosA)^3/(1/cosA)^2+(cosA/sinA)^3/(1/sinA)^2 {since tanA=sinA/cosA , cotA=cosA/sinA , secA=1/cosA and cosecA=1/sinA
= sin^3A/cos^3A/1/cos^2A+cos^3A/sin^3A/1/sin^2A
= sin^3A/cosA+cos^3A/sinA
= (sin^3A*sinA+cos^3A*cosA)/sinA*cosA
= {(sin^2A)^2+(cos^2A)^2}/sinA*cosA
= {(sin^2A+cos^2A)-2sin^2A*cos^2A}/sinA*cosA
{since (a^2+b^2) = (a+b)^2 - 2ab}
= {(1)^2-2sin^2Acos^2A}/sinA*cosA
= (1-2sin^2A*cos^2A)/sinA*cosA
= RHS
Hope this will help you.....!!!!
Similar questions
English,
7 months ago
CBSE BOARD X,
7 months ago
Science,
1 year ago
Economy,
1 year ago
Math,
1 year ago