Math, asked by niteshshaw723, 5 months ago

please answer this question ​

Attachments:

Answers

Answered by Flaunt
24

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Given :

3\:Cot \theta =  \dfrac{3(B)}{4(P)}

Here base is 3 and perpendicular is 4

By using Pythagoras theorem :-

 \bold{\boxed{{H}^{2}  =  {P}^{2}  +  {B}^{2}}}

 {H}^{2}  =  {4}^{2}  +  {3}^{2}

 {H}^{2}  = 16 + 9 = 25

H=  \sqrt{25}  = 5

Taking L.H.S

=>we know that tan is perpendicular /base

 =  >  \dfrac{(1 -  {tan}^{2}  \theta)}{(1 +  {tan}^{2}  \theta)}

 =  >  \dfrac{1 -  {(\dfrac{3}{4} )}^{2} }{1 +  { (\dfrac{3}{4} )}^{2} }

 =  >  \dfrac{1 -  \dfrac{9}{16} }{1 +  \dfrac{9}{16} }

 =  >   \dfrac{ \dfrac{16 - 9}{16} }{ \dfrac{16 + 9}{16} }

  =  >  {\red{\dfrac{7}{25}}}

Now,taking R.H.S =>

 \bold{=  >  {cos}^{2}  \theta - {sin}^{2}  \theta}

=>Cos is Base /hypotenuse and

=> sin is perpendicular/base

 =  >   {( \dfrac{4}{5}) }^{2}  -  { (\dfrac{3}{5} )}^{2}

 =  >  \dfrac{16}{25}  -  \dfrac{9}{25} =  {\red{\dfrac{7}{25} }}

Hence,proved L.H.S=R.H.S

Answered by Anonymous
2

ok, thanks for information

Similar questions