Math, asked by sugunanikhil06, 2 months ago

please answer this question​

Attachments:

Answers

Answered by vaishnavi1177
1

Given→

cosA , tanA and secA

To find→

Given trignometric ratio in terms of sinA

Solution→

→ {sin}^{2} A +  {cos}^{2} A = 1 \:  \:  \:   \\  \\ → {cos}^{2} A = 1 - {sin}^{2} A  \:  \:  \:  \\  \\  → cosA =  \sqrt{1 - {sin}^{2} A}  \\  \\ \\  \\ → tanA =  \frac{sinA}{cosA}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\    \\ → tanA =  \frac{sinA}{ \sqrt{1 -  {sin}^{2}A } } \\  \\ \\ \\  → secA =   \frac{1}{cosA}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\→ secA =  \frac{1}{ \sqrt{1 -  {sin}^{2}A } }

Similar questions