Math, asked by abhishek20041017, 1 day ago

please answer this question​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\: {(1 + x)}^{n} = \: ^nC_ 0 +  \:  ^nC_ 1x +  \:  ^nC_ 2 {x}^{2} +  -  -  -  -  +  ^nC_ n {x}^{n}

can also be rewritten as

\rm :\longmapsto\: {(1 + x)}^{n} = \: C_ 0 +  \:  C_ 1x +  \:  C_ 2 {x}^{2} +  -  -  -  -  +  C_ n {x}^{n}

We know,

\boxed{ \sf{ \: ^nC_ 0 \:  =  \:  C_ 0 = 1}}

So, using this, we get

\rm :\longmapsto\: {(1 + x)}^{n} = \: 1 +  \:  C_ 1x +  \:  C_ 2 {x}^{2} +  -  -  -  -  +  C_ n {x}^{n}

Now, put x = 1, we get

\rm :\longmapsto\: {(1 + 1)}^{n} = \: 1 +  \:  C_ 1(1) +  \:  C_ 2 {(1)}^{2} +  -  -  -  +  C_ n {(1)}^{n}

\rm :\longmapsto\: {2}^{n} = \: 1 +  \:  C_ 1 +  \:  C_ 2  +  -  -  -  +  C_ n

\bf :\longmapsto\:   C_ 1 +  \:  C_ 2  +  -  -  -  +  C_ n =  {2}^{n} - 1

Hence, Option (b) is correct.

Additional Information :-

Let's solve few more examples of same type!!!

Question :- Prove that

\bf :\longmapsto\:   C_ 0  -   \:  C_ 1   +   C_ 2 -  C_3  -  -  -  +  {( - 1)}^{n}  C_ n = 0

Solution :-

We know that,

\rm :\longmapsto\: {(1 + x)}^{n} = \: ^nC_ 0 +  \:  ^nC_ 1x +  \:  ^nC_ 2 {x}^{2} +  -  -  -  -  +  ^nC_ n {x}^{n}

can also be rewritten as

\rm :\longmapsto\: {(1 + x)}^{n} = \: C_ 0 +  \:  C_ 1x +  \:  C_ 2 {x}^{2} +  -  -  -  -  +  C_ n {x}^{n}

Now, put x = - 1, we get

\rm :\longmapsto\: {(1 - 1)}^{n} = \: C_ 0 +  \:  C_ 1( - 1) +  \:  C_ 2 {( - 1)}^{2} +  -  -    +  C_ n {( - 1)}^{n}

\rm :\longmapsto\: {0}^{n} = \: C_ 0  -   \:  C_ 1 +  \:  C_ 2 +  -  -    +  C_ n {( - 1)}^{n}

\bf :\longmapsto\: \: C_ 0  -   \:  C_ 1 +  \:  C_ 2 +  -  -    +  C_ n {( - 1)}^{n}  = 0

Hence, Proved

Similar questions