Math, asked by chandusuragond, 3 months ago

please answer this question.
Answer is x=1. But how I don't know.​

Attachments:

Answers

Answered by EnchantedGirl
6

Given:-

  • \displaystyle \sf \frac{x^2 + 5x+6}{x^2 + 4x +4} = \frac{3x+1}{5x-2} \\

\\

To find:-

  • Value of x.

\\

Solution:-

\\

\displaystyle :\implies \sf \frac{x^2 + 5x+6}{x^2 + 4x +4} = \frac{3x+1}{5x-2} \\\\

\displaystyle :\implies \sf \frac{x^2+3x+2x+6}{x^2+4x+4} = \frac{3x+1}{5x-2} \\\\

As (x+2)² = x²+4x+4

\displaystyle :\implies \sf \frac{x^2+3x+2x+6}{(x+2)^2} = \frac{3x+1}{5x-2} \\\\

\displaystyle :\implies \sf \frac{x(x+3)+2(x+3)}{(x+2)^2} = \frac{3x+1}{5x-2} \\\\

\displaystyle :\implies \sf \frac{(x+2)(x+3)}{(x+2)^2} =\frac{3x+1}{5x -2}\\\\

\displaystyle :\implies \sf \frac{x+3}{x+2} = \frac{3x+1}{5x-2} \\\\

Where [x≠-2]

\\ \displaystyle :\implies \sf (x+3)(5x-2) = (x+2)(3x+1)\\\\

\displaystyle :\implies \sf 5x^2 - 2x+15x -6=3x^2 + x+6x+2\\\\

\displaystyle :\implies \sf 5x^2 - 3x^2 -2x+15x - x -6x - 6 -2 = 0 \\\\

\displaystyle :\implies \sf 2x^2+6x-8 = 0 \\\\

\displaystyle :\implies \sf 2(x^2 + 3x-4) = 0 \\\\

\displaystyle :\implies \sf x^2+3x-4 = 0 \\\\

\displaystyle :\implies \sf x^2 + 4x - x - 4 =0\\\\

\displaystyle :\implies \sf x(x+4)-1(x+4) = 0 \\\\:\implies \sf (x-1)(x+4) = 0 \\\\

\displaystyle :\implies \underline{\boxed{\sf x = 1,-4}} \\\\

Hence,

The value of x is 1,-4.

___________

Similar questions