Math, asked by kavishagandhi2007, 5 months ago

Please answer this question as soon as possible. Please don't spam​

Attachments:

Answers

Answered by Dinosaurs1842
5

Given :-

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 18

To find :-

x -  \dfrac{1}{x}

Identity to use :-

(a-b)² = a² - 2ab + b²

substituting the values,

(x -  \dfrac{1}{x})^{2}  =  ({x})^{2}  - 2(x)( \dfrac{1}{x}) +  (\dfrac{1}{x})^{2}

(x -  \dfrac{1}{x})^{2}  =  {x}^{2}  - 2( \not x)( \dfrac{1}{ \not x}) +  \dfrac{1}{ {x}^{2} }

(x -  \dfrac{1}{x})^{2}  =  {x}^{2}  - 2  + \dfrac{1}{ {x}^{2} }

By rearranging,

(x -  \dfrac{1}{x})^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2

By substituting the value for x²+1/x²,

(x -  \dfrac{1}{x})^{2}  = 18 - 2

(x -  \dfrac{1}{x})^{2}  = 16

(x -  \dfrac{1}{x}) = √16

(x -  \dfrac{1}{x}) = 4

Some more identities :

(a+b)² = a² + 2ab + b²

a²-b² = (a-b)(a+b)

(x+a)(x+b) = x² + x(a+b) + ab

(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca

Similar questions