Physics, asked by diyapatel25, 9 months ago

Please answer this question ASAP​

Attachments:

Answers

Answered by Mysterioushine
7

\huge\red{\bold{\underline{\underline{Given:-}}}}

  • \large\bold{\overrightarrow{A}\:=\:2\hat{i}-\hat{j}-3\hat{k}}
  • \large\bold{\overrightarrow{B}\:=\:\hat{i}+2\hat{j}-\hat{k}}

\huge\blue{\bold{\underline{\underline{To\:Find:-}}}}

  • \large\bold{\overrightarrow{A}\times\:\overrightarrow{B}}
  • \large\bold{|\overrightarrow{A}+\overrightarrow{B}|}
  • \large\bold{(\overrightarrow{A}+\overrightarrow{B})\times\:({\overrightarrow{A}-\overrightarrow{B})}}

\huge\green{\bold{\underline{\underline{Solution:-}}}}

i) \large\bold{\overrightarrow{A}\times\:\overrightarrow{B}\:=\:(2\hat{i}-\hat{j}-3\hat{k})\times\:(\hat{i}+2\hat{j}-\hat{k})}

\large\bold{=\:\begin{vmatrix} \sf  \hat{i}&  \sf\hat{-j}& \sf  \hat{k} \\ \sf 2&  \sf -1& \sf  -3 \\  \sf 1&  \sf 2& \sf  -1 \end{vmatrix}}

\large\bold{=\:[(1)-(-6)]\hat{i}-[(-2)-(-3)]\hat{j}+[4-(-1)]\hat{k}}

\large\bold{=\:[7\hat{i}-\hat{j}+5\hat{k}]}

ii) \large\bold{|\overrightarrow{A}+\overrightarrow{B}|\:=\:\sqrt{|A|^2+|B|^2+2A.B}}

First let us calculate ,

  • | A | , | B |
  • A.B

a] |A| = \large\bold{\sqrt{(2)^2+(-1)^2+(-3)^2}}

\large\bold{=\:\sqrt{14}}

b] | B | = \large\bold{\sqrt{(1)^2+(-1)^2+(2)^2}}

\large\bold{=\:\sqrt{6}}

c] A.B = (2×1) + (-1×2) + (-3×-1)

= 2 + (-2) + 3 = 3

Now ,

\large\bold{|\overrightarrow{A}+\overrightarrow{B}|\:=\:\sqrt{(\sqrt{14})^2+(\sqrt{6})^2+2(3)}}

\large\bold{=\:\sqrt{26}}

iii) First let us find the values of ,

  • \large\bold{(\overrightarrow{A}+\overrightarrow{B})}
  • \large\bold{(\overrightarrow{A}-\overrightarrow{B})}

a] \large\bold{(\overrightarrow{A}+\overrightarrow{B})\:=\:(2\hat{i}-\hat{j}-3\hat{k})+(\hat{i}+2\hat{j}-\hat{k})}

\large\bold{=\:3\hat{i}+\hat{j}-4\hat{k}}

b] \large\bold{(\overrightarrow{A}-\overrightarrow{B})\:=\:(2\hat{i}-\hat{j}-3\hat{k})-(\hat{i}+2\hat{j}-\hat{k})}

\large\bold{=\:\hat{i}-3\hat{j}-2\hat{k}}

Now ,

\large\bold{(\overrightarrow{A}+\overrightarrow{B})\times\:(\overrightarrow{A}-\overrightarrow{B})\:=\:{(3\hat{i}+\hat{j}-4\hat{k})\times\:(\hat{i}-3\hat{j}-2\hat{k})}}

\large\bold{=\:\begin{vmatrix} \sf  \hat{i}&  \sf\hat{-j}& \sf  \hat{k} \\ \sf 3&  \sf 1& \sf  -4 \\  \sf 1&  \sf -3& \sf  -2 \end{vmatrix}}

\large\bold{=\:[(-2)-(12)]\hat{i}-[-6-(-4)]\hat{j}+[-9-(1)]\hat{k}}

\large\bold{=\:[-14\hat{i}+2\hat{j}-10\hat{k}]}

\large\bold{\therefore{\overrightarrow{A}\times\:\overrightarrow{B}\:=\:7\hat{i}-\hat{j}+5\hat{k}}}

\large\bold{|\overrightarrow{A}+\overrightarrow{B}|\:=\:\sqrt{26}}

\large\bold{(\overrightarrow{A}+\overrightarrow{B})\times\:(\overrightarrow{A}-\overrightarrow{B})\:=\:-14\hat{i}+2\hat{j}-10\hat{k}}

Answered by abdulrubfaheemi
0

Answer:

\huge\red{\bold{\underline{\underline{Given:-}}}}

Given:−

\large\bold{\overrightarrow{A}\:=\:2\hat{i}-\hat{j}-3\hat{k}}

A

=2

i

^

j

^

−3

k

^

\large\bold{\overrightarrow{B}\:=\:\hat{i}+2\hat{j}-\hat{k}}

B

=

i

^

+2

j

^

k

^

\huge\blue{\bold{\underline{\underline{To\:Find:-}}}}

ToFind:−

\large\bold{\overrightarrow{A}\times\:\overrightarrow{B}}

A

×

B

\large\bold{|\overrightarrow{A}+\overrightarrow{B}|}∣

A

+

B

\large\bold{(\overrightarrow{A}+\overrightarrow{B})\times\:({\overrightarrow{A}-\overrightarrow{B})}}(

A

+

B

)×(

A

B

)

\huge\green{\bold{\underline{\underline{Solution:-}}}}

Solution:−

i) \large\bold{\overrightarrow{A}\times\:\overrightarrow{B}\:=\:(2\hat{i}-\hat{j}-3\hat{k})\times\:(\hat{i}+2\hat{j}-\hat{k})}

A

×

B

=(2

i

^

j

^

−3

k

^

)×(

i

^

+2

j

^

k

^

)

\begin{gathered}\large\bold{=\:\begin{vmatrix} \sf \hat{i}& \sf\hat{-j}& \sf \hat{k} \\ \sf 2& \sf -1& \sf -3 \\ \sf 1& \sf 2& \sf -1 \end{vmatrix}}\end{gathered}

=

i

^

2

1

−j

^

−1

2

k

^

−3

−1

\large\bold{=\:[(1)-(-6)]\hat{i}-[(-2)-(-3)]\hat{j}+[4-(-1)]\hat{k}}=[(1)−(−6)]

i

^

−[(−2)−(−3)]

j

^

+[4−(−1)]

k

^

\large\bold{=\:[7\hat{i}-\hat{j}+5\hat{k}]}=[7

i

^

j

^

+5

k

^

]

ii) \large\bold{|\overrightarrow{A}+\overrightarrow{B}|\:=\:\sqrt{|A|^2+|B|^2+2A.B}}∣

A

+

B

∣=

∣A∣

2

+∣B∣

2

+2A.B

First let us calculate ,

| A | , | B |

A.B

a] |A| = \large\bold{\sqrt{(2)^2+(-1)^2+(-3)^2}}

(2)

2

+(−1)

2

+(−3)

2

\large\bold{=\:\sqrt{14}}=

14

b] | B | = \large\bold{\sqrt{(1)^2+(-1)^2+(2)^2}}

(1)

2

+(−1)

2

+(2)

2

\large\bold{=\:\sqrt{6}}=

6

c] A.B = (2×1) + (-1×2) + (-3×-1)

= 2 + (-2) + 3 = 3

Now ,

\large\bold{|\overrightarrow{A}+\overrightarrow{B}|\:=\:\sqrt{(\sqrt{14})^2+(\sqrt{6})^2+2(3)}}∣

A

+

B

∣=

(

14

)

2

+(

6

)

2

+2(3)

\large\bold{=\:\sqrt{26}}=

26

iii) First let us find the values of ,

\large\bold{(\overrightarrow{A}+\overrightarrow{B})}(

A

+

B

)

\large\bold{(\overrightarrow{A}-\overrightarrow{B})}(

A

B

)

a] \large\bold{(\overrightarrow{A}+\overrightarrow{B})\:=\:(2\hat{i}-\hat{j}-3\hat{k})+(\hat{i}+2\hat{j}-\hat{k})}(

A

+

B

)=(2

i

^

j

^

−3

k

^

)+(

i

^

+2

j

^

k

^

)

\large\bold{=\:3\hat{i}+\hat{j}-4\hat{k}}=3

i

^

+

j

^

−4

k

^

b] \large\bold{(\overrightarrow{A}-\overrightarrow{B})\:=\:(2\hat{i}-\hat{j}-3\hat{k})-(\hat{i}+2\hat{j}-\hat{k})}(

A

B

)=(2

i

^

j

^

−3

k

^

)−(

i

^

+2

j

^

k

^

)

\large\bold{=\:\hat{i}-3\hat{j}-2\hat{k}}=

i

^

−3

j

^

−2

k

^

Now ,

\large\bold{(\overrightarrow{A}+\overrightarrow{B})\times\:(\overrightarrow{A}-\overrightarrow{B})\:=\:{(3\hat{i}+\hat{j}-4\hat{k})\times\:(\hat{i}-3\hat{j}-2\hat{k})}}(

A

+

B

)×(

A

B

)=(3

i

^

+

j

^

−4

k

^

)×(

i

^

−3

j

^

−2

k

^

)

\begin{gathered}\large\bold{=\:\begin{vmatrix} \sf \hat{i}& \sf\hat{-j}& \sf \hat{k} \\ \sf 3& \sf 1& \sf -4 \\ \sf 1& \sf -3& \sf -2 \end{vmatrix}}\end{gathered}

=

i

^

3

1

−j

^

1

−3

k

^

−4

−2

\large\bold{=\:[(-2)-(12)]\hat{i}-[-6-(-4)]\hat{j}+[-9-(1)]\hat{k}}=[(−2)−(12)]

i

^

−[−6−(−4)]

j

^

+[−9−(1)]

k

^

\large\bold{=\:[-14\hat{i}+2\hat{j}-10\hat{k}]}=[−14

i

^

+2

j

^

−10

k

^

]

\large\bold{\therefore{\overrightarrow{A}\times\:\overrightarrow{B}\:=\:7\hat{i}-\hat{j}+5\hat{k}}}∴

A

×

B

=7

i

^

j

^

+5

k

^

\large\bold{|\overrightarrow{A}+\overrightarrow{B}|\:=\:\sqrt{26}}∣

A

+

B

∣=

26

\large\bold{(\overrightarrow{A}+\overrightarrow{B})\times\:(\overrightarrow{A}-\overrightarrow{B})\:=\:-14\hat{i}+2\hat{j}-10\hat{k}}(

A

+

B

)×(

A

B

)=−14

i

^

+2

j

^

−10

k

^

Similar questions