Math, asked by gsarju7, 18 days ago

Please answer this question ASAP

Attachments:

Answers

Answered by mathdude500
8

Given Question :- Evaluate

\rm \:  \sqrt[3]{\dfrac{216}{729} }  +  \sqrt[3]{0.064}  +  \sqrt[3]{( - 1331) \times (3375)}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \sqrt[3]{\dfrac{216}{729} }  +  \sqrt[3]{0.064}  +  \sqrt[3]{( - 1331) \times (3375)}  \\

can be rewritten as

\rm \:  =  \sqrt[3]{\dfrac{216}{729} }  +  \sqrt[3]{\dfrac{64}{1000} }  +  \sqrt[3]{( - 1331) \times (3375)}  \\

Now, to evaluate this, let we first convert each term in to its prime factorization.

So,

\rm \: 216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 =  {6}^{3}  \\

\rm \: 729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 =  {9}^{3}  \\

\rm \: 64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 =  {4}^{3}  \\

\rm \: 1331 = 11 \times 11 \times 11 =  {11}^{3}  \\

\rm \: 3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5 =  {15}^{3}  \\

So, the above expression can be rewritten as

\rm \:  =  \sqrt[3]{\dfrac{ {6}^{3} }{ {9}^{3} } }  +  \sqrt[3]{\dfrac{ {4}^{3} }{ {10}^{3} } }  +  \sqrt[3]{ {( - 11)}^{3}  \times  {15}^{3} }  \\

\rm \:  =  \: \dfrac{6}{9}  + \dfrac{4}{10}  + ( - 11)(15)

\rm \:  =  \: \dfrac{2}{3}  +  \frac{2}{5}   - 165 \\

\rm \:  =  \: \dfrac{10 + 6 - 2475}{15} \\

\rm \:  =  \: -\dfrac{2459}{15} \\

Hence,

\boxed{ \rm{\sqrt[3]{\dfrac{216}{729} }  +  \sqrt[3]{0.064}  +  \sqrt[3]{( - 1331) \times (3375)} = - \frac{2459}{15} \: }}\\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by ItzHannu001
4

Answer:

 \sf {\blue{  \underline{ \red{Concept:-}}}}

In the question we have given to evaluate the cube roots. We have to expand the number one by one then find their roots(cube) and then we find the answer.

 \sf{ \red {\underline{To  \:  \: Evaluate:-}}}

 \rightarrow   \sqrt[3]{ \frac{216}{729} }  +   \sqrt[3]{0.064}  +  \sqrt[3]{( - 1331) \times (3375)}

First we expand them

 \rightarrow \sf \sqrt[3]{ \frac{6 \times 6 \times 6 }{9 \times 9 \times 9} }  +  \sqrt[3]{0.4 \times 0.4 \times 0.4}  +  \sqrt[3]{( - 11 \times  - 11  \times  - 11) \times (15 \times 15 \times 15)}

Then write in cubic form

  \rightarrow \sf \sqrt[3]{ \frac{( {6})^{3} }{( {9})^{3} } }  +  \sqrt[3]{( {0.4})^{3} }  +  \sqrt[3]{ ({ - 11})^{3} \times ( {15})^{3}  }

 \sf \rightarrow { (\frac{6}{9}) }^{3 \times  \frac{1}{3} }  +  ({0.4})^{3 \times  \frac{1}{3} }  +  {( - 11)(15)}^{3 \times  \frac{1}{3} }

Now we cut their cubes,

 \sf \rightarrow \frac{6}{9}  + 0.4 + ( - 11 \times 15)

After removing cubes

 \sf \rightarrow \frac{2}{3}  +  \frac{4}{10}  - 165

 \sf \rightarrow \frac{2}{3}  +  \frac{2}{5}  - 165

 \sf \rightarrow \frac{10 + 6 - 2475}{15}

 \sf \rightarrow \red{ \frac{2459}{15} }

Similar questions