please answer this question..
don't give the unless answer, I Report it..
Attachments:
Answers
Answered by
1
Answer:
Here is the solution
Explanation:
Prove that sin x + sin 3x COS X + Cos 3x = tan 2x
Taking L.H.S. sin x + sin 3x COS X + cos 3x
We solve sin x + sin 3x & cos x + cos 3x seperately
sin x + sin 3x
x+y Using sin x + sin y = 2 sin *+ Putting x=x & y = 3x COS x-y 2
= 2 sin (x+³x) cos (*=³*) 2
= 2 sin (1) cos (-2³)
= 2 sin 2x cos(-x)
COS X + cos 3x
x+y x-y Using cos x + cos y = 2 cos COS 2 Putting x= x & y = 3x 2
= 2 cos • (x+³x) cos (5x=³x) 2 COS 2
= 2 cos (4x) COS
= 2 cos 2x cos (-x)
Now
sin x + sin 3x cos x + cos 3x
2 sin 2x cos(-x) 2 cos 2x cos(-x) sin 2x cos 2x
= tan 2x
= R.H.S
Hence L.H.S = R.H.S
Hence proved
Answered by
1
Answer:
you got the answer but other
Similar questions