Math, asked by Anonymous, 10 months ago

Please answer this question fast •‿•​

Attachments:

Answers

Answered by Anonymous
7

\sf\blue{Question}

\sf{An \ AP \ has \ 27 \ terms. \ The \ sum \ of \ the}

\sf{middle \ term \ and \ the \ two \ terms \ adjacent \ on}

\sf{each \ sides \ of \ it \ is \ 177. \ The \ sum \ of \ the}

\sf{last \ three \ terms \ is \ 321. \ Find \ the \ first}

\sf{terms \ of \ AP.}

__________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{First \ three \ terms \ of \ an \ AP \ are}

\sf{7, \ 11 \ and \ 15 \ respectively.}

\sf\orange{\underline{\underline{Given:}}}

\sf{\implies{Sum \ of \ middle \ term \ and \ the}}

\sf{two \ terms \ adjacent \ on \ each \ side \ of \ it \ is \ 177.}

\sf{\implies{The \ sum \ of \ the \ last \ three \ terms}}

\sf{is \ 321.}

\sf\pink{To \ find:}

\sf{The \ first \ three \ terms \ of \ an \ AP.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ 27 \ terms \ of \ an \ AP \ be}

{(a-13d), \ (a-12d), \ (a-11d), \ (a-10d), \ (a-9d),}

{(a-8d), \ (a-7d), \ (a-6d), \ (a-5d), \ (a-4d), \ (a-3d),}

{(a-2d), \ (a-d), \ a, \ (a+d), \ (a+2d), \ (a+3d), \ (a+4d),}

{(a+5d), \ (a+6d), \ (a+7d), \ (a+8d), \ (a+9d), \ (a+10d),}

{(a+11d), \ (a+12d) \ and \ (a+13d)}

\sf{According \ to \ the \ first \ condition.}

\sf{(a-d)+a+(a+d)=177}

\sf{3a=177}

\sf{a=\frac{177}{3}}

\boxed{\sf{a=59...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{(a+11d)+(a+12d)+(a+13d)=321}

\sf{3a+36d=321}

\sf{But, \ a=59 \ from \ (1)}

\sf{3(59)+36d=321}

\sf{177+36d=321}

\sf{36d=321-177}

\sf{36d=144}

\sf{d=\frac{144}{36}}

\boxed{\sf{d=4}}

\sf{\therefore{First \ three \ terms \ of \ an \ AP \ are}}

\sf{(a-13d)=59-13(4)=59-52=7,}

\sf{(a-12d)=59-12(4)=59-48=11,}

\sf{(a-11d)=59-11(4)=59-44=15}

\sf\purple{\tt{\therefore{First \ three \ terms \ of \ an \ AP \ are}}}

\sf\purple{\tt{7, \ 11 \ and \ 15 \ respectively.}}

Answered by MяƖиνιѕιвʟє
47

ɢɪᴠᴇɴ :-

An AP has 27 terms. The sum of the middle term and the Two adjacent on each sides of it is 177.If the sum of the last three terms Ais 321.

ᴛᴏ ғɪɴᴅ :-

  • First three terms

sᴏʟᴜᴛɪᴏɴ :-

According to 1st condition :-

  • Middle term = a14
  • Adjacent terms = a13 and a15

a13 + a14 + a15 = 177. ----(given)

(a + 12d) + (a + 13d) + (a + 14d) = 177

3a + 39d = 177

3(a + 13d) = 177

(a + 13d) = 177/3

(a + 13d) = 59

a = (59 - 13d) -----(1)

According to 2nd condition :-

  • Last three terms are a25 , a26 , a27

a25 + a26 + a27 = 321 ---(given)

(a + 24d) + (a + 25d) + (a + 26d) = 321

3a + 75d = 321

3(a + 25d) = 321

(a + 25d) = 321/3

(a + 25d) = 107

a = (107 - 25d) --(2)

From (1) and (2) , we get,

59 - 13d = 107 - 25d

25d - 13d = 107 - 59

12d = 48

d = 48/12

d = 4

Put d = 4 in (1) , we get,

a = (59 - 13d)

a = (59 - 13×4)

a = (59 - 52)

a = 7

Hence,

  • First term (a1) = 7
  • Second term (a2) = a + d = 7 + 4 = 11
  • Third term (a3) = a + 2d = 7 + 2×4 = 15

Hence,

  • Last three terms are 7 , 11 , 15
Similar questions