Physics, asked by bhadra5, 10 months ago

please answer this question fastly 16th question please​

Attachments:

Answers

Answered by Anonymous
5

Solution :

Given:

✏ A car starts from rest and moving along x-axis with constant acceleration 5m\sf{s^{-2}} for 8 seconds.

✏ It then continues with constant velocity.

To Find:

✏ Total distance covered by car in 12 seconds since it started from the rest.

Formula:

✏ Formula of distance covered in acceleratory motion is given by

 \bigstar \:  \boxed{ \tt{ \pink{d = ut +  \frac{1}{2} a {t}^{2} }}} \:  \bigstar

✏ Formula of distance covered uniform motion is given by

 \bigstar \:  \boxed{ \tt{ \purple{d = v \times t}}} \:  \bigstar

Calculation:

_________________________________

 \circ \sf \: d_1 =( 0 \times 8) +  { \huge{(}} \dfrac{1}{2}  \times 5 \times  {8}^{2} { \huge{)}} \\  \\  \circ \sf \: d_1 = 0.5 \times 5 \times 64 \\  \\  \circ \:  \boxed{ \tt{ \red{ \large{d_1 = 160 \: m}}}}

_________________________________

 \circ \sf \: d_2 = v \times t \\  \\  \circ \sf \: d_2 = (u + at) \times t' \\  \\  \circ \sf \: d_2 = (0  + 40) \times 4 \\  \\  \circ  \:  \boxed{ \tt{ \blue{ \large{ d_2 = 160 \: m}}}}

_________________________________

 \implies \sf \: d_t = d_1 + d_2 \\  \\  \implies \sf \: d_t = 160 + 160 \\  \\  \implies \:  \boxed{ \tt{ \large{ \red{d_t = 320 \: m}}}} \:  \orange{ \bigstar}

_________________________________

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Total\:distance\:travelled=320\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Acceleration = 5  \: {m/s}^{2}  \\  \\  \tt:  \implies Time(t) = 8 \: sec \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Distance \: travel \: in \: 12 \: second = ?

• According to given question :

 \tt \circ \: Initial \: velocity = 0 \: m/s  \\  \\ \bold{as \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2} {at}^{2}  \\  \\ \tt:  \implies  s_{1} = 0 \times 8 +  \frac{1}{2}  \times 5 \times  {8}^{2}  \\  \\ \tt:  \implies  s_{1} = 5 \times 32 \\  \\   \green{\tt:  \implies  s_{1} =160 \: m} \\  \\  \bold{For \: final \: velocity : } \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\  \tt:  \implies  {v}^{2}  =  {0}^{2}  + 2 \times 5 \times 160 \\  \\ \tt:  \implies  {v}^{2}  = 1600 \\  \\ \tt:  \implies  v =  \sqrt{1600}  \\  \\  \green{\tt:  \implies  v = 40 \: m/s} \\  \\  \tt \circ \: New \: Initial \: velocity = 40 \: m/s \\   \\  \tt \circ \: Acceleration = 0 \: m/ {s}^{2} \\  \\  \tt \circ \:Time = 4 \: sec  \\ \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies  s_{2} = 40 \times 4 \\  \\  \green{\tt:  \implies  s_{2} =160 \: m} \\  \\  \bold{For \: total \: distance : } \\ \tt:  \implies  s= s_{1} + s_{2} \\  \\ \tt:  \implies  s= 160 + 160 \\  \\  \green{\tt:  \implies  s= 320 \: m} \\  \\   \green{\tt \therefore Total \: distance \: travelled \: by \: car \:is \: 320 \: m}

Similar questions