Math, asked by minnieme12, 10 months ago

please answer this question from the chapter of Real Nos. class 10​

Attachments:

Answers

Answered by IamIronMan0
1

Answer:

4

First we write general term

a_n =  \frac{r}{1 +  {r}^{2} +  {r}^{4}  } \\  \\   =  \frac{r}{ {r}^{4} +  2{r}^{2}  + 1 -  {r}^{2}  }  \\  \\  =  \frac{r}{( {r}^{2} + 1) {}^{2}  -  {r}^{2}  }  \\  \\  =  \frac{r}{( {r}^{2}  + r + 1)( {r}^{2} + r - 1) }  \times  \frac{2}{2}  \\  \\  =  \frac{1}{2} . \frac{ ( {r}^{2}  + r + 1) - ( {r}^{2} + r - 1) }{( {r}^{2}  + r + 1)( {r}^{2} + r - 1)} \\  \\  =  \frac{1}{2} ( \frac{1}{ {r}^{2}   -  r + 1}  -  \frac{1}{ {r}^{2}  + r + 1} )

Now let's check terms

a_1 =  \frac{1}{2} (1 -  \frac{1}{3} )

a_2 =  \frac{1}{2} ( \frac{1}{3}  -  \frac{1}{7} )

a_3 =  \frac{1}{2} ( \frac{1}{7}  -  \frac{1}{13} )

As you can see pattern , in our sum all terms will cancel except first and last so

s =  \frac{1}{2} (1 -  \frac{1}{ {99}^{2} + 99 + 1 } ) \approx0.5 - 0.0001 = 0.499

Similar questions