Math, asked by Pramdeep, 1 year ago

Please answer this question in deyail form
all the questions

Attachments:

Answers

Answered by jaya1012
1
HELLO........FRIEND!!

THE ANSWER IS HERE,


a)

 =  >  \:  \frac{5 +  2\sqrt{3} }{7 + 4 \sqrt{3} }

 =  >  \:  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

 =  >  \:  \frac{35 - 20 \sqrt{3 } + 14 \sqrt{3} - 24  }{ {7}^{2}  -  {(4 \sqrt{3})}^{2} }

 =  >  \:  \frac{11 - 6 \sqrt{3} }{49 - 48}


 =  >  \: 11 - 6 \sqrt{3} .


comparing \: with \:  \: a + b \sqrt{3}

we get,

a=11 , b =-6


b)


 =  >  \:  \frac{5 +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }

 =  >  \:  \frac{5 +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }

 =  >  \:  \frac{5 \sqrt{5}  + 5 \sqrt{3}  +  \sqrt{15} + 3 }{5 - 3}

 =  >  \:  \frac{1}{2} (5 \sqrt{5}  + 5 \sqrt{3}  + 3) +  \frac{1}{2} ( \sqrt{15} )

comparing \: with \:  \:  \frac{1}{2} a + 3b \sqrt{15}

a = 5 \sqrt{5}  + 5 \sqrt{3}  + 3

b =  \frac{1}{6}


19)

a)

 =  >  \:  \frac{3}{ \sqrt{5}  -  \sqrt{3} }

 =  >  \:  \frac{3}{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }

 =  >  \:  \frac{3 \sqrt{5} + 3 \sqrt{3}  }{5 - 3}

 =  >  \:  \frac{3 \sqrt{5}  + 3 \sqrt{3} }{2}

b)

 =  >  \:  \frac{2 \sqrt{7} }{ \sqrt{5}  +  \sqrt{3} }

 =  >  \:  \frac{2 \sqrt{7} }{ \sqrt{5}  +  \sqrt{3} }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }

 =  >  \:  \frac{2 \sqrt{35}  - 2 \sqrt{21} }{5 - 3}

 =  >  \:  \frac{2 \sqrt{35}  - 2 \sqrt{21}  }{2}

 =  >   \sqrt{35}  -  \sqrt{21}


:-)Hope it helps u.
Answered by Anonymous
0

Answer:

ahawu ahahag ahgaga ahahagn abaha. agayag ahhaha ahahag ahahhq qhhaga ahahhaqhahahahah ahhaha qhahah

Similar questions