Math, asked by masabishiraj53, 5 months ago

please answer this question please its urgent no fake answer who will answer the correct I will mark as brainliest answer

Attachments:

Answers

Answered by prateeknrao
2

Answer:

Scientists have estimated that there are 8.7 million animal species on Earth. Some of these are fierce (lions, sharks, tigers). Some are adorable (rabbits, deer, otters).

And others are, well, really weird.

Across the globe, you'll find unique animals that exhibit truly remarkable and bizarre features and behaviors. From a frog that shows off its organs to a goat that faints when scared, here are 50 unusual animals to add to your travel bucket list now.

Answered by IdyllicAurora
12

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question}}}

Here the Concept of Areas of Trapezium has been used. We see that the given figure has been divided into two Trapeizums. We already see that we are given the dimensions of both the Trapeziums. So firstly we can find the areas of them separately and then add them both to find the answer.

Let's do it !!

____________________________________________

Formula Used :-

\\\;\boxed{\sf{Area\;of\;Trapezium\;=\;\bf{\dfrac{1}{2}\:\times\:(Sum\:of\:Parallel\:sides)\:\times\:Height}}}

____________________________________________

Solution :-

Given,

» For Trapezium ABFC ::

  • Parallel sides = AB and FC = 10 cm and 16 cm

  • Height = 3 cm

» For Trapezium EDFC ::

  • Parallel Sides = ED and FC = 12 cm and 16 cm

  • Height = 5 cm

____________________________________________

~ For the Area of Trapezium ABFC ::

\\\;\;\sf{:\rightarrow\;\;Area\;of\;Trapezium\;=\;\bf{\dfrac{1}{2}\:\times\:(Sum\:of\:Parallel\:sides)\:\times\:Height}}

By applying values, we get,

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:ABFC\;=\;\bf{\dfrac{1}{2}\:\times\:(AB\;+\;FC)\:\times\;3}}

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:ABFC\;=\;\bf{\dfrac{1}{2}\:\times\:(10\;+\;16)\:\times\;3}}

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:ABFC\;=\;\bf{\dfrac{1}{2}\:\times\:(26)\:\times\;3}}

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:ABFC\;=\;\bf{13\;\times\;3}}

\\\;\;\bf{:\Longrightarrow\;\;Area\;of\;Trapezium\:ABFC\;=\;\bf{\green{39\;\:cm^{2}}}}

____________________________________________

~ For the Area of Trapezium EDFC ::

\\\;\;\sf{:\rightarrow\;\;Area\;of\;Trapezium\;=\;\bf{\dfrac{1}{2}\:\times\:(Sum\:of\:Parallel\:sides)\:\times\:Height}}

By applying values, we get,

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:EDFC\;=\;\bf{\dfrac{1}{2}\:\times\:(ED\;+\;FC)\:\times\;5}}

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:EDFC\;=\;\bf{\dfrac{1}{2}\:\times\:(12\;+\;16)\:\times\;5}}

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:EDFC\;=\;\bf{\dfrac{1}{2}\:\times\:(28)\:\times\;5}}

\\\;\;\sf{:\Longrightarrow\;\;Area\;of\;Trapezium\:EDFC\;=\;\bf{14\;\times\;5}}

\\\;\;\bf{:\Longrightarrow\;\;Area\;of\;Trapezium\:EDFC\;=\;\bf{\green{70\;\:cm^{2}}}}

____________________________________________

~ For the Area of the Polygon ::

\\\;\sf{:\mapsto\;\;Area\;of\;Polygon\;=\;\bf{Sum\;of\;areas\;both\;Trapeziums}}

\\\;\sf{:\mapsto\;\;Area\;of\;Polygon\;=\;\bf{Area\;of\;Trapezium\;ABFC\;+\;Area\;of\;Trapezium\;EDFC}}

\\\;\sf{:\mapsto\;\;Area\;of\;Polygon\;=\;\bf{39\;+\;70}}

\\\;\sf{:\mapsto\;\;Area\;of\;Polygon\;=\;\bf{\orange{109\;\:cm^{2}}}}

\\\;\underline{\boxed{\tt{Area\;\:of\;\:Polygon\;=\;\bf{\purple{109\;\;cm^{2}}}}}}

____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Area\;of\;Square\;=\;(Side)^{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\\\;\sf{\leadsto\;\;Area\;of\;Circle\;=\;\pi r^{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\\\;\sf{\leadsto\;\;Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

Similar questions