Math, asked by vaibhavverma31, 2 days ago

please answer this question ?pls dont spam

Attachments:

Answers

Answered by anindyaadhikari13
4

\textsf{\large{\underline{Solution}:}}

Let us assume that:

 \rm: \longmapsto u =  {x}^{2013}

Therefore, the equation becomes:

 \rm: \longmapsto u +  \dfrac{1}{u}  = 2

 \rm: \longmapsto \dfrac{  {u}^{2} + 1}{u}  = 2

 \rm: \longmapsto{u}^{2} + 1 = 2u

 \rm: \longmapsto{u}^{2} - 2u + 1 =0

 \rm: \longmapsto  {(u - 1)}^{2} =0

 \rm: \longmapsto u = 1

Now substitute the value of u. We get:

 \rm: \longmapsto {x}^{2013}  = 1

 \rm: \longmapsto x = 1

Therefore:

 \rm: \longmapsto {x}^{2022}  +  \dfrac{1}{ {x}^{2022} }  = 1 + 1

 \rm: \longmapsto {x}^{2022}  +  \dfrac{1}{ {x}^{2022} }  = 2

★ Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Similar questions