Math, asked by vanibattu, 9 months ago

.
please answer this question
those who spam will be reported
I need quality answer then I will mark as brainliest​

Attachments:

Answers

Answered by BrainlyConqueror0901
25

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{tan  \: \frac{  \theta_{1} -  \theta_{2} }{2}  \: tan  \: \frac{  \theta_{1}  +  \theta_{2} }{2}   =  -  \frac{1}{3}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies cos \:  \theta_{1} = 2 \: cos \:   \theta_{2} \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies   tan  \: \frac{  \theta_{1} -  \theta_{2} }{2}  \: tan  \: \frac{  \theta_{1}  +  \theta_{2} }{2}   =?

• According to given question :

 \bold{As \: we \: know \: that} \\ \tt:  \implies   tan  \: \frac{  \theta_{1} -  \theta_{2} }{2}  \: tan  \: \frac{  \theta_{1}  +  \theta_{2} }{2}    \\  \\ \tt:  \implies  \frac{ sin \: \frac{\theta_{1} -  \theta_{2}}{2} }{cos  \: \frac{\theta_{1} -  \theta_{2}}{2} }  \times  \frac{ sin \: \frac{\theta_{1}  +   \theta_{2}}{2} }{cos  \: \frac{\theta_{1}  + \theta_{2}}{2} } \\  \\ \text{Multiplying \: both \: in \: numerator \: and \: denominator \: by \: 2}  \\  \\ \tt:  \implies \frac{ 2 \: sin \: \frac{\theta_{1} -  \theta_{2}}{2} }{2 \: cos  \: \frac{\theta_{1} -  \theta_{2}}{2} }  \frac{ sin \: \frac{\theta_{1}  +   \theta_{2}}{2} }{cos  \: \frac{\theta_{1}  + \theta_{2}}{2} } \\  \\  \tt \circ \: 2 \: sin \: A\: sin \:B = cos(A - B)  - cos(A+ B)

 \tt \circ \: 2 \: cos \: A\: cos\: B= cos(A +  B)   + cos(A - B) \\  \\  \tt:  \implies  \frac{cos   \: \bigg(\frac{\theta_{1} -  \theta_{2}}{2}   -    (\frac{\theta_{1}      +  \theta_{2}}{2} ) \bigg) - cos   \: \bigg(\frac{\theta_{1} -  \theta_{2}}{2}    +   \frac{\theta_{1}      +  \theta_{2}}{2}  \bigg)}{cos   \: \bigg(\frac{\theta_{1} -  \theta_{2}}{2}    +    (\frac{\theta_{1}       +  \theta_{2}}{2} ) \bigg) + cos   \: \bigg(\frac{\theta_{1} -  \theta_{2}}{2}     -  (\frac{\theta_{1}      +  \theta_{2}}{2} ) \bigg)}  \\  \\  \tt:  \implies  \frac{cos( -  \theta_{2}) - cos \:   \theta_{1}  }{cos   \: \theta_{1} + cos( -   \theta_{2})}  \\  \\  \tt \circ \: cos( -  \theta) = cos \: \theta \\  \\  \tt:  \implies  \frac{cos \:   \theta_{2} -  cos \:  \theta_{1}}{cos \:   \theta_{1}  + cos \:  \theta_{2}}  \\  \\  \tt:  \implies  \frac{cos \:   \theta_{2} - 2cos \:   \theta_{2}}{2cos \:   \theta_{2} +cos \:   \theta_{2}}  \\  \\  \tt:  \implies   - \frac{cos \:   \theta_{2}}{3cos \:   \theta_{2}} \\  \\   \green{\tt:  \implies tan  \: \frac{  \theta_{1} -  \theta_{2} }{2}  \: tan  \: \frac{  \theta_{1}  +  \theta_{2} }{2}   =  -  \frac{1}{3} }

Similar questions