please answer this question tomorrow is my paper
Attachments:
Answers
Answered by
0
Hello,
Very good and tricky question.
The formulae that will be used in the question are
Now, using the second one we simplify the above question as follows.
[tex] {( \frac{ {x}^{b} }{ {x}^{c} }) }^{(b + c )- a} \times {( \frac{ {x}^{c} }{ {x}^{a} }) }^{(c + a)- b} \times {( \frac{ {x}^{a} }{ {x}^{b} }) }^{(a + b) - c} \\ {( {x}^{(b - c)} )}^{(b + c )- a)} \times {( {x}^{(c - a)} )}^{(c + a )- b)} \times {( {x}^{(a - b)} )}^{(a + b )- c)} \\ \\ using \: \: { {(x}^{m} )}^{n} = {x}^{mn } \\
X^b²-c²-ab+ac +c²-a²-bc+ab+a²-b²-ac+bc
X^0 =1
Hope this will be helping you ✌️
Very good and tricky question.
The formulae that will be used in the question are
Now, using the second one we simplify the above question as follows.
[tex] {( \frac{ {x}^{b} }{ {x}^{c} }) }^{(b + c )- a} \times {( \frac{ {x}^{c} }{ {x}^{a} }) }^{(c + a)- b} \times {( \frac{ {x}^{a} }{ {x}^{b} }) }^{(a + b) - c} \\ {( {x}^{(b - c)} )}^{(b + c )- a)} \times {( {x}^{(c - a)} )}^{(c + a )- b)} \times {( {x}^{(a - b)} )}^{(a + b )- c)} \\ \\ using \: \: { {(x}^{m} )}^{n} = {x}^{mn } \\
X^b²-c²-ab+ac +c²-a²-bc+ab+a²-b²-ac+bc
X^0 =1
Hope this will be helping you ✌️
Similar questions