Science, asked by mayurmaurya48, 5 months ago

please answer this question type of weatherings , define them with examples​

Answers

Answered by anjalimaurya3876
1

Chemical weathering typically increases as temperatures rise and rain falls, which means rocks in hot and wet climates experience faster rates of chemical weathering than do rocks in cold, dry climates.

Physical weathering occurs more often in cold climates, because the different minerals within rocks expand and contract at different rates when they are heated and cooled. Repeated heating and cooling cycles eventually cause rocks to fracture. Desert and mountain climates experience a wide range of temperatures from low to high during a day and night, which accounts for the breakdown of rocks known as physical weathering.

Biological weathering occurs when living organisms break up rocks. Tree roots, for example, can fracture rocks in the same way they buckle pavement. Warm, humid climates are most favorable to life. Contrast the rich diversity of life in a rainforest, for example, with the scarcity of life in the dry Sahara or the frigid Antarctic. Consequently, rates of biological weathering are most rapid in warm humid climates like those in tropical regions.

Answered by Anonymous
0

Answer:

Physical weathering, also called mechanical weathering or disaggregation, is the class of processes that causes the disintegration of rocks without chemical change. The primary process in physical weathering is abrasion (the process by which clasts and other particles are reduced in size). However, chemical and physical weathering often go hand in hand. Physical weathering can occur due to temperature, pressure, frost etc. For example, cracks exploited by physical weathering will increase the surface area exposed to chemical action, thus amplifying the rate of disintegration.

Abrasion by water, ice, and wind processes loaded with sediment can have tremendous cutting power, as is amply demonstrated by the gorges, ravines, and valleys around the world. In glacial areas, huge moving ice masses embedded with soil and rock fragments grind down rocks in their path and carry away large volumes of material. Plant roots sometimes enter cracks in rocks and pry them apart, resulting in some disintegration; the burrowing of animals may help disintegrate rock. However, such biotic influences are usually of little importance in producing parent material when compared to the drastic physical effects of water, ice, wind, and temperature change.

Thermal stress Edit

Thermal stress weathering, sometimes called insolation weathering,[2] results from the expansion and contraction of rock, caused by temperature changes. For example, heating of rocks by sunlight or fires can cause expansion of their constituent minerals. As some minerals expand more than others, temperature changes set up differential stresses that eventually cause the rock to crack apart. Because the outer surface of a rock is often warmer or colder than the more protected inner portions, some rocks may weather by exfoliation – the peeling away of outer layers. This process may be sharply accelerated if ice forms in the surface cracks. When water freezes, it can expand with a force of about 1465 metric ton/m2,[citation needed] disintegrating huge rock masses and dislodging mineral grains from smaller fragments.

Thermal stress weathering comprises two main types, thermal shock and thermal fatigue. Thermal stress weathering is an important mechanism in deserts, where there is a large diurnal temperature range, hot in the day and cold at night.[3] The repeated heating and cooling exerts stress on the outer layers of rocks, which can cause their outer layers to peel off in thin sheets. The process of peeling off is also called exfoliation. Although temperature changes are the principal driver, moisture can enhance thermal expansion in rock. Forest fires and range fires are also known to cause significant weathering of rocks and boulders exposed along the ground surface. Intense localized heat can rapidly expand a boulder.

The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur. The differential expansion of a thermal gradient can be understood in terms of stress or of strain, equivalently. At some point, this stress can exceed the strength of the material, causing a crack to form. If nothing stops this crack from propagating through the material, it will result in the object's structure to fail.

Frost weathering Edit

A rock in Abisko, Sweden fractured along existing joints possibly by frost weathering or thermal stress.

Main article: Frost weathering

Learn more

Parts of this article (those related to Conflating frost weathering and frost wedging and also not incorporating hydrofracturing, which makes the science here seem wrong. See paper referenced on Frost weathering page: Matsuoka, N.; Murton, J. 2008. "Frost weathering: recent advances and future directions". Permafrost Periglac. Process. 19: 195–210. doi:10.1002/ppp.620.) need to be updated.

Frost weathering, also called ice wedging or cryofracturing, is the collective name for several processes where ice is present. These processes include frost shattering, frost-wedging and freeze–thaw weathering. Severe frost shattering produces huge piles of rock fragments called scree which may be located at the foot of mountain areas or along slopes. Frost weathering is common in mountain areas where the temperature is around the freezing point of water. Certain frost-susceptible soils expand or heave upon freezing as a result of water migrating via capillary action to grow ice lenses near the freezi front.[4] This same phenomenon occurs within pore spaces of rocks. The ice accumulations grow larger as they attract liquid water from the surrounding pores. The ice crystal growth weakens the rocks which, in time, break up.[5] It is caused by the approximately 10% (9.87) expansion of ice when water freezes, which can place considerable stress on anything containing the water as it freezes.

Similar questions