Math, asked by sanjeevsudarsanam, 11 months ago

please answer this question with detailed solution.

A)0
B)1
C)-1
D)2

Attachments:

Answers

Answered by Anonymous
1

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Find}}}}

  • \sf{\blue{\displaystyle \lim_{x \to 0 } \dfrac{e^x+e^{-x}-2}{x^2}}}.

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

:\mapsto\sf{\red{\:\displaystyle\lim_{x \to 0 } \dfrac{e^x+e^{-x}-2}{x^2}}} \\ \\ \\ :\mapsto\sf{\:\displaystyle \lim_{ x \to 0} \dfrac{e^x+\dfrac{1}{e^x}-2}{x^2}} \\ \\ \\ :\mapsto\sf{\:\displaystyle \lim_{x \to 0} \dfrac{e^x.e^{x}+1-2e^{-x}}{x^2}} \\ \\ \\ :\mapsto\sf{\:\displaystyle \lim_{x \to 0} \dfrac{e^{2x}+1-2e^x}{x^2}} \\ \\ \\ :\mapsto\sf{\:\displaystyle \lim_{x \to 0} \dfrac{(e^x-1)^2}{x^2}} \\ \\ \\ :\mapsto\sf{\:\displaystyle \lim_{x \to 0} \left(\dfrac{e^x-1}{x^2}\right)^2}

But, we know,

\bigstar\red{\:\displaystyle \lim_{x \to 0} \dfrac{e^x-1}{x}\:=\:1}

So,

:\mapsto\sf{\:(1)^2} \\ \\ \\ :\mapsto\sf{\pink{\:1\:\:\:\:\:Ans.}}

\Large{\underline{\mathfrak{\bf{Thus}}}}

  • Your answer will be options number (B).

_____________________

Similar questions