Math, asked by Anonymous, 8 months ago

Please answer this question with explaination ✍️

⭐Explaination needed
⭐Please don't post spam and copied answers ​

Attachments:

Answers

Answered by rocky200216
45

\mathcal{\pink{\underbrace{\blue{GIVEN:-}}}}

  • A = { 1 , 2 , 3 }

  • The relation R defined in A by aRb,
  1. If | - | 5” .

\mathcal{\pink{\underbrace{\blue{TO\:FIND:-}}}}

  1. Set R .
  2. \rm\bold{R^{-1}} .
  3. Domain of R .
  4. Range of R .

  • And finally check that which Option is incorrect according to the question .

\mathcal{\pink{\underbrace{\blue{SOLUTION:-}}}}

Given that,

  • |a² - b²| ≤ 5

CASE - 1 :-

Let,

  • a = 1

=> |1² - b²| ≤ 5

=> |b² - 1²| ≤ 5

☃️ If we put the value of b = 1 or 2, then all outputs of the above equation are less than equal to 5 .

✍️ Hence, the values of b are 1 and 2 .

\rm\red{\therefore} The possible sets are “ (1 , 1) and (1 , 2) ” .

CASE - 2 :-

Let,

  • a = 2

=> |2² - b²| ≤ 5

=> |b² - 2²| ≤ 5

☃️ If we put the value of b = 1 or 2 or 3, then all outputs of the above equation are less than equal to 5 .

✍️ Hence, the values of b are 1 , 2 and 3

\rm\red{\therefore} The possible set are “ (2 , 1) , (2 , 2) , (2 , 3) ” .

CASE - 3 :-

Let,

  • a = 3

=> |3² - b²| ≤ 5

=> |b² - 3²| ≤ 5

☃️ If we put the value of b = 2 or 3, then all outputs of the above equation are less than equal to 5 .

✍️ Hence, the values of b are 2 and 3 .

\rm\red{\therefore} The possible sets are “ (3 , 2) , (3 , 3) ” .

✯ Therefore, form the above three cases we can confirmed the set R, i.e.

\rm{\pink{\overbrace{\underbrace{\purple{[1]\:R\:=\:\left\{(1\:,\:1)\:,\:(1\:,\:2)\:,\:(2\:,\:1)\:,\:(2\:,\:2)\:,\:(2\:,\:3)\:,\:(3\:,\:2)\:,\:(3\:,\:3)\right\}\:}}}}}

We have know that,

\orange{\bigstar} \rm{\green{R^{-1}\:=\:\left\{(y\:,\:x):(x\:,\:y)\:\in\:R\right\}\:}}

\rm{\pink{\overbrace{\underbrace{\purple{[2]\:R^{-1}\:=\:\left\{(1\:,\:1)\:,\:(2\:,\:1)\:,\:(1\:,\:2)\:,\:(2\:,\:2)\:,\:(3\:,\:2)\:,\:(2\:,\:3)\:,\:(3\:,\:3)\right\}\:}}}}}

We have know that,

☃️ Domain of a set = {x : (x , y) \rm{\in} R}

\rm{\pink{\overbrace{\underbrace{\purple{[3]\:Domain\:of\:R\:=\:{\:1\:,\:2\:,\:3\:}\:}}}}}

We have know that,

☃️ Range of a set = {y : (x , y) \rm{\in} R}

\rm{\pink{\overbrace{\underbrace{\purple{[4]\:Range\:of\:R\:=\:{\:1\:,\:2\:,\:3\:}\:}}}}}

\rule{200}2

✍️ Hence, from the above four solution we have confirmed that the incorrect option is “D” .

\green\bigstar\:\rm{\gray{\boxed{\pink{Required\:Answer\:\longrightarrow\:(D)\:Range\:of\:R\:=\:\left\{5\right\}\:}}}}

Answered by bhramarbar15
2

Answer:

\mathcal{\pink{\underbrace{\blue{GIVEN:-}}}}

GIVEN:−

A = { 1 , 2 , 3 }

The relation R defined in A by aRb,

If “|a² - b²| ≤ 5” .

\mathcal{\pink{\underbrace{\blue{TO\:FIND:-}}}}

TOFIND:−

Set R .

\rm\bold{R^{-1}}R

−1

.

Domain of R .

Range of R .

And finally check that which Option is incorrect according to the question .

\mathcal{\pink{\underbrace{\blue{SOLUTION:-}}}}

SOLUTION:−

Given that,

|a² - b²| ≤ 5

CASE - 1 :-

Let,

a = 1

=> |1² - b²| ≤ 5

=> |b² - 1²| ≤ 5

☃️ If we put the value of b = 1 or 2, then all outputs of the above equation are less than equal to 5 .

✍️ Hence, the values of b are 1 and 2 .

\rm\red{\therefore}∴ The possible sets are “ (1 , 1) and (1 , 2) ” .

CASE - 2 :-

Let,

a = 2

=> |2² - b²| ≤ 5

=> |b² - 2²| ≤ 5

☃️ If we put the value of b = 1 or 2 or 3, then all outputs of the above equation are less than equal to 5 .

✍️ Hence, the values of b are 1 , 2 and 3

\rm\red{\therefore}∴ The possible set are “ (2 , 1) , (2 , 2) , (2 , 3) ” .

CASE - 3 :-

Let,

a = 3

=> |3² - b²| ≤ 5

=> |b² - 3²| ≤ 5

☃️ If we put the value of b = 2 or 3, then all outputs of the above equation are less than equal to 5 .

✍️ Hence, the values of b are 2 and 3 .

\rm\red{\therefore}∴ The possible sets are “ (3 , 2) , (3 , 3) ” .

✯ Therefore, form the above three cases we can confirmed the set R, i.e.

\rm{\pink{\overbrace{\underbrace{\purple{[1]\:R\:=\:\{(1\:,\:1)\:,\:(1\:,\:2)\:,\:(2\:,\:1)\:,\:(2\:,\:2)\:,\:(2\:,\:3)\:,\:(3\:,\:2)\:,\:(3\:,\:3)\}\:}}}}}

[1]R={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)}

We have know that,

\orange{\bigstar}★ \rm{\green{R^{-1}\:=\:\{(y\:,\:x):(x\:,\:y)\:\in\:R\}\:}}R

−1

={(y,x):(x,y)∈R}

\rm{\pink{\overbrace{\underbrace{\purple{[2]\:R^{-1}\:=\:\{(1\:,\:1)\:,\:(2\:,\:1)\:,\:(1\:,\:2)\:,\:(2\:,\:2)\:,\:(3\:,\:2)\:,\:(2\:,\:3)\:,\:(3\:,\:3)\}\:}}}}}

[2]R

−1

={(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3)}

We have know that,

☃️ Domain of a set = {x : (x , y) \rm{\in}∈ R}

\rm{\pink{\overbrace{\underbrace{\purple{[3]\:Domain\:of\:R\:=\:{\:1\:,\:2\:,\:3\:}\:}}}}}

[3]DomainofR=1,2,3

We have know that,

☃️ Range of a set = {y : (x , y) \rm{\in}∈ R}

\rm{\pink{\overbrace{\underbrace{\purple{[4]\:Range\:of\:R\:=\:{\:1\:,\:2\:,\:3\:}\:}}}}}

[4]RangeofR=1,2,3

\rule{200}2

✍️ Hence, from the above four solution we have confirmed that the incorrect option is “D” .

\green\bigstar\:\rm{\gray{\boxed{\pink{Required\:Answer\:\longrightarrow\:(D)\:Range\:of\:R\:=\:\{5\}\:}}}}★

RequiredAnswer⟶(D)RangeofR={5}

Similar questions