please answer this question with process..find x.
Attachments:
Answers
Answered by
4
(x² - 3x - 28)/x² - 49=3/17
=) (x² + 7x - 4x - 28)/x² - 7²=3/17
=) [x(x + 7) - 4(x+7)]/(x + 7) (x - 7)=3/17
=) (x + 7) (x - 4)/(x + 7) (x - 7)=3/17
=) (x - 4)/(x - 7)=3/17
=) 3(x - 7)=17(x - 4)
=) 3x - 21=17x - 68
=) 3x - 17x= -68+21
=) -14x= -47
=) x= 47/14
Pls Like this answer and if any wrong then pls comment in the comment option.
=) (x² + 7x - 4x - 28)/x² - 7²=3/17
=) [x(x + 7) - 4(x+7)]/(x + 7) (x - 7)=3/17
=) (x + 7) (x - 4)/(x + 7) (x - 7)=3/17
=) (x - 4)/(x - 7)=3/17
=) 3(x - 7)=17(x - 4)
=) 3x - 21=17x - 68
=) 3x - 17x= -68+21
=) -14x= -47
=) x= 47/14
Pls Like this answer and if any wrong then pls comment in the comment option.
Satyam2772:
Bcoz I wasted my time in this silly question.
Answered by
2
Given x^2 - 3x - 28/x^2 - 49 = 3/17
On cross-multiplication, we get
(x^2 - 3x - 28) * 17 = (x^2 - 49) * 3
17x^2 - 51x - 476 = 3x^2 - 147
17x^2 - 51x - 476 - 3x^2 + 147
14x^2 - 51x - 329 = 0
We know that Quadratic Equation formula is -b+/root b^2 - 4ac/2a
-b + root b^2 - 4ac/2a
= -(-51) + root (-51)^2 - 4(14)(-329)/2*14
= 7 ---- (1)
-b - root b^2 - 4ac
= -(-51)-root (-51)^2 - 4(14)-(329)/2*14
= -47/14. ------ (2)
Final solutions are x = 7 and x = -47/14.
Since x = 7 doesn't satisfy the condition, The value of x will be x = -47/14.
Hope this helps!
On cross-multiplication, we get
(x^2 - 3x - 28) * 17 = (x^2 - 49) * 3
17x^2 - 51x - 476 = 3x^2 - 147
17x^2 - 51x - 476 - 3x^2 + 147
14x^2 - 51x - 329 = 0
We know that Quadratic Equation formula is -b+/root b^2 - 4ac/2a
-b + root b^2 - 4ac/2a
= -(-51) + root (-51)^2 - 4(14)(-329)/2*14
= 7 ---- (1)
-b - root b^2 - 4ac
= -(-51)-root (-51)^2 - 4(14)-(329)/2*14
= -47/14. ------ (2)
Final solutions are x = 7 and x = -47/14.
Since x = 7 doesn't satisfy the condition, The value of x will be x = -47/14.
Hope this helps!
Similar questions