Math, asked by Anonymous, 5 months ago

please answer this question without using latex ?

Class - 10th
Chapter - Trignometry ​

Attachments:

Answers

Answered by Anonymous
6

Given:-

 \frac{sin \: x - cos \: x + 1}{sin \: x + cos \: x - 1}  =  \frac{1}{sec \: x - tan \: x}

Solution:-

LHS=

 \frac{sin \: x - cos \: x + 1}{sin \: x  + cos \: x  - 1 }

Dividing by cos, we get,

 =  \frac{ \frac{sin \: x}{cos \: x}  -  \frac{cos \: x}{cos \: x} +  \frac{1}{cos \: x}  }{ \frac{sin \: x}{sin \: x} +  \frac{cos \: x}{cos \: x} -  \frac{1}{cos \: x}   }

 =  \frac{tan \: x - 1 + sec \: x}{tan \: x + 1 - sec \: x}

 =  \frac{sec \: x + tan  \: x - ( {sec}^{2}x \:  -  {tan}^{2}x)  }{tan \: x + 1 - sec \: x}

 =  \frac{sec \: x + tan \: x - (sec \: x + tan \: x)(sec \: x - tan \: x)}{tan \: x + 1 - sec \: x}

 =  \frac{(sec \: x + tan \: x)(1 - sec \: x + tan \: x)}{tan \: x + 1 - sec \: x}

 = sec \: x + tan \: x \times  \frac{sec \: x - tan \: x}{sec \: x - tan \: x}

  = \frac{ {sec}^{2}x -  {tan}^{2} x }{sec \: x - tan \: x}

 =  \frac{1}{sec \: x - tan \: x}

= RHS

Hence, proved.

Answered by Anonymous
13

Step-by-step explanation:

Please. refer attachment

muze latex nhi aate!

Attachments:
Similar questions