Math, asked by ishafahad, 5 months ago

Please answer to this question

Attachments:

Answers

Answered by Anonymous
3

Solution:-

Given

 \sf \to \:  \dfrac{y - 4}{y + 2}  =  \dfrac{1}{4}

To find the value of Y

Now Take

\sf \to \:  \dfrac{y - 4}{y + 2}  =  \dfrac{1}{4}

Using cross multiplication methods

 \sf \to \: 4(y - 4) = 1(y + 2)

 \sf \to \: 4y - 16 = y + 2

 \sf \to \: 4y - y = 2 + 16

 \sf \to \: 3y = 18

 \sf \to \: y =  \dfrac{18}{3}  = 6

So y = 6

Now check our answer

\sf \to \:  \dfrac{y - 4}{y + 2}  =  \dfrac{1}{4}

 \sf \to \:  \dfrac{6 - 4}{6 + 2}  =  \dfrac{1}{4}

 \sf \to \:  \dfrac{2}{8}  =  \dfrac{1}{4}

 \sf \to \:  \dfrac{1}{4}  =  \dfrac{1}{4}

LHS = RHS

Answered by Anonymous
94

Question :-

If \sf \frac{y - 4}{y + 2}  =  \frac{1}{4} then value of y is

Answer :-

\implies\sf \frac{y - 4}{y + 2}  =  \frac{1}{4}  \\  \\ \implies\sf4(y - 4) = (y + 2)  \\  \\ \implies\sf4y - 16 = y + 2 \\  \\  \implies\sf4y - y = 16 + 2 \\  \\ \implies\sf 3y = 18 \\  \\ \implies\sf y =  \frac{18}{3}  \\  \\\implies\sf y = 6

Similar questions