Math, asked by ribhutripathi18116, 9 hours ago

PLEASE ANSWER WITH PROPER SOLUTION.​

Attachments:

Answers

Answered by mathdude500
7

Given Question :-

Prove that,

 \sf \:\dfrac{2}{a + b}  + \dfrac{2}{b + c}  + \dfrac{2}{c + a}  < \dfrac{1}{a}  + \dfrac{1}{b}  + \dfrac{1}{c}  \: where \: a,b,c > 0

 \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:a,b,c > 0

\rm \implies\:\dfrac{1}{a}, \dfrac{1}{b}, \dfrac{1}{c}  > 0

We know,

Arithmetic mean and Harmonic mean between two distinct real numbers are interrelated by the relationship

\boxed{\tt{ Arithmetic \: mean >  Harmonic \: mean}}

Now,

 \rm :\longmapsto\:\sf \: Let  \: us \:  consider \:  two \: numbers \: \dfrac{1}{a}  \: and \: \dfrac{1}{b}

So,

\rm :\longmapsto\:\dfrac{1}{2} \bigg[\dfrac{1}{a}  + \dfrac{1}{b} \bigg]  >  \dfrac{2}{\dfrac{1}{\dfrac{1}{a} }  + \dfrac{1}{\dfrac{1}{b} } }

\rm \implies\:\dfrac{1}{a}  + \dfrac{1}{b} > \dfrac{4}{a + b}  -  -  -  - (1)

Similarly,

\rm \implies\:\dfrac{1}{b}  + \dfrac{1}{c} > \dfrac{4}{b + c}  -  -  -  - (2)

and

\rm \implies\:\dfrac{1}{c}  + \dfrac{1}{a} > \dfrac{4}{c + a}  -  -  -  - (3)

On adding equation (1), (2) and (3), we get

\rm :\longmapsto\:2\bigg[\dfrac{1}{a}  + \dfrac{1}{b}  + \dfrac{1}{c} \bigg] > \dfrac{4}{a + b}  + \dfrac{4}{b + c}  + \dfrac{4}{c + a}

\rm :\longmapsto\:\dfrac{1}{a}  + \dfrac{1}{b}  + \dfrac{1}{c} > \dfrac{2}{a + b}  + \dfrac{2}{b + c}  + \dfrac{2}{c + a}

\bf\implies \:\dfrac{2}{a + b}  + \dfrac{2}{b + c}  + \dfrac{2}{c + a}  < \dfrac{1}{a}  + \dfrac{1}{b}  + \dfrac{1}{c}

HENCE , PROVED

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Let us consider two positive real numbers a and b, then

Arithmetic mean between a and b is

\rm \implies\:\boxed{\tt{  \: AM =  \frac{a + b}{2} \: }}

Geometric mean between a and b is

\rm \implies\:\boxed{\tt{  \: GM =   \sqrt{ab}  \: }}

Harmonic mean between a and b is

\rm \implies\:\boxed{\tt{  \: HM =  \frac{2}{ \dfrac{1}{a}  +  \dfrac{1}{b} } \: }}

\red{\rm :\longmapsto\:\boxed{\tt{ AM \geqslant GM \geqslant HM \: }}}

Similar questions